Nonlinear Cone Separation Theorems in Real Topological Linear Spaces

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Christian Günther
  • Bahareh Khazayel
  • Christiane Tammer

Organisationseinheiten

Externe Organisationen

  • Martin-Luther-Universität Halle-Wittenberg
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)225 - 250
Seitenumfang26
FachzeitschriftSIAM journal on optimization
Jahrgang34
Ausgabenummer1
Frühes Online-Datum16 Jan. 2024
PublikationsstatusVeröffentlicht - März 2024

Abstract

The separation of two sets (or more specific of two cones) plays an important role in different fields of mathematics such as variational analysis, convex analysis, convex geometry, and optimization. In the paper, we derive some new results for the separation of two not necessarily convex cones by a (convex) cone/conical surface in real (topological) linear spaces. Basically, we follow the separation approach by Kasimbeyli [SIAM J. Optim., 20 (2010), pp. 1591-1619] based on augmented dual cones and Bishop-Phelps type (normlinear) separating functions. Classical separation theorems for convex sets are the key tool for proving our main nonlinear cone separation theorems.

ASJC Scopus Sachgebiete

Zitieren

Nonlinear Cone Separation Theorems in Real Topological Linear Spaces. / Günther, Christian; Khazayel, Bahareh; Tammer, Christiane.
in: SIAM journal on optimization, Jahrgang 34, Nr. 1, 03.2024, S. 225 - 250.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Günther C, Khazayel B, Tammer C. Nonlinear Cone Separation Theorems in Real Topological Linear Spaces. SIAM journal on optimization. 2024 Mär;34(1):225 - 250. Epub 2024 Jan 16. doi: 10.48550/arXiv.2212.06293, 10.1137/22M1542003
Günther, Christian ; Khazayel, Bahareh ; Tammer, Christiane. / Nonlinear Cone Separation Theorems in Real Topological Linear Spaces. in: SIAM journal on optimization. 2024 ; Jahrgang 34, Nr. 1. S. 225 - 250.
Download
@article{eb2f6ec4ec6f49eeab5386801edf19b0,
title = "Nonlinear Cone Separation Theorems in Real Topological Linear Spaces",
abstract = "The separation of two sets (or more specific of two cones) plays an important role in different fields of mathematics such as variational analysis, convex analysis, convex geometry, and optimization. In the paper, we derive some new results for the separation of two not necessarily convex cones by a (convex) cone/conical surface in real (topological) linear spaces. Basically, we follow the separation approach by Kasimbeyli [SIAM J. Optim., 20 (2010), pp. 1591-1619] based on augmented dual cones and Bishop-Phelps type (normlinear) separating functions. Classical separation theorems for convex sets are the key tool for proving our main nonlinear cone separation theorems.",
keywords = "augmented dual cone, base, Bishop-Phelps cone, cone separation, nonconvex cone, seminorm, separation theorem",
author = "Christian G{\"u}nther and Bahareh Khazayel and Christiane Tammer",
note = "Publisher Copyright: {\textcopyright} 2024 Society for Industrial and Applied Mathematics.",
year = "2024",
month = mar,
doi = "10.48550/arXiv.2212.06293",
language = "English",
volume = "34",
pages = "225 -- 250",
journal = "SIAM journal on optimization",
issn = "1052-6234",
publisher = "Society for Industrial and Applied Mathematics Publications",
number = "1",

}

Download

TY - JOUR

T1 - Nonlinear Cone Separation Theorems in Real Topological Linear Spaces

AU - Günther, Christian

AU - Khazayel, Bahareh

AU - Tammer, Christiane

N1 - Publisher Copyright: © 2024 Society for Industrial and Applied Mathematics.

PY - 2024/3

Y1 - 2024/3

N2 - The separation of two sets (or more specific of two cones) plays an important role in different fields of mathematics such as variational analysis, convex analysis, convex geometry, and optimization. In the paper, we derive some new results for the separation of two not necessarily convex cones by a (convex) cone/conical surface in real (topological) linear spaces. Basically, we follow the separation approach by Kasimbeyli [SIAM J. Optim., 20 (2010), pp. 1591-1619] based on augmented dual cones and Bishop-Phelps type (normlinear) separating functions. Classical separation theorems for convex sets are the key tool for proving our main nonlinear cone separation theorems.

AB - The separation of two sets (or more specific of two cones) plays an important role in different fields of mathematics such as variational analysis, convex analysis, convex geometry, and optimization. In the paper, we derive some new results for the separation of two not necessarily convex cones by a (convex) cone/conical surface in real (topological) linear spaces. Basically, we follow the separation approach by Kasimbeyli [SIAM J. Optim., 20 (2010), pp. 1591-1619] based on augmented dual cones and Bishop-Phelps type (normlinear) separating functions. Classical separation theorems for convex sets are the key tool for proving our main nonlinear cone separation theorems.

KW - augmented dual cone

KW - base

KW - Bishop-Phelps cone

KW - cone separation

KW - nonconvex cone

KW - seminorm

KW - separation theorem

UR - http://www.scopus.com/inward/record.url?scp=85190170226&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2212.06293

DO - 10.48550/arXiv.2212.06293

M3 - Article

VL - 34

SP - 225

EP - 250

JO - SIAM journal on optimization

JF - SIAM journal on optimization

SN - 1052-6234

IS - 1

ER -