Nonexistence of minimal Lagrangian spheres in hyperKähler manifolds

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Max-Planck-Institut für Mathematik in den Naturwissenschaften (MIS)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)41-48
Seitenumfang8
FachzeitschriftCalculus of Variations and Partial Differential Equations
Jahrgang10
Ausgabenummer1
PublikationsstatusVeröffentlicht - Jan. 2000
Extern publiziertJa

Abstract

We prove that for n > 1 one cannot immerse S2n as a minimal Lagrangian manifold into a hyperKähler manifold. More generally we show that any minimal Lagrangian immersion of an orientable closed manifold L2n into a hyperKähler manifold H4n must have nonvanishing second Betti number β2 and that if β2 = 1, L2n is a Kähler manifold and more precisely a Kähler submanifold in H4n w.r.t. one of the complex structures on H4n. In addition we derive a result for the other Betti numbers.

ASJC Scopus Sachgebiete

Zitieren

Nonexistence of minimal Lagrangian spheres in hyperKähler manifolds. / Smoczyk, Knut.
in: Calculus of Variations and Partial Differential Equations, Jahrgang 10, Nr. 1, 01.2000, S. 41-48.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{0ede71a45f214915abe61764feddda17,
title = "Nonexistence of minimal Lagrangian spheres in hyperK{\"a}hler manifolds",
abstract = "We prove that for n > 1 one cannot immerse S2n as a minimal Lagrangian manifold into a hyperK{\"a}hler manifold. More generally we show that any minimal Lagrangian immersion of an orientable closed manifold L2n into a hyperK{\"a}hler manifold H4n must have nonvanishing second Betti number β2 and that if β2 = 1, L2n is a K{\"a}hler manifold and more precisely a K{\"a}hler submanifold in H4n w.r.t. one of the complex structures on H4n. In addition we derive a result for the other Betti numbers.",
author = "Knut Smoczyk",
year = "2000",
month = jan,
doi = "10.1007/PL00013454",
language = "English",
volume = "10",
pages = "41--48",
journal = "Calculus of Variations and Partial Differential Equations",
issn = "0944-2669",
publisher = "Springer New York",
number = "1",

}

Download

TY - JOUR

T1 - Nonexistence of minimal Lagrangian spheres in hyperKähler manifolds

AU - Smoczyk, Knut

PY - 2000/1

Y1 - 2000/1

N2 - We prove that for n > 1 one cannot immerse S2n as a minimal Lagrangian manifold into a hyperKähler manifold. More generally we show that any minimal Lagrangian immersion of an orientable closed manifold L2n into a hyperKähler manifold H4n must have nonvanishing second Betti number β2 and that if β2 = 1, L2n is a Kähler manifold and more precisely a Kähler submanifold in H4n w.r.t. one of the complex structures on H4n. In addition we derive a result for the other Betti numbers.

AB - We prove that for n > 1 one cannot immerse S2n as a minimal Lagrangian manifold into a hyperKähler manifold. More generally we show that any minimal Lagrangian immersion of an orientable closed manifold L2n into a hyperKähler manifold H4n must have nonvanishing second Betti number β2 and that if β2 = 1, L2n is a Kähler manifold and more precisely a Kähler submanifold in H4n w.r.t. one of the complex structures on H4n. In addition we derive a result for the other Betti numbers.

UR - http://www.scopus.com/inward/record.url?scp=0012943743&partnerID=8YFLogxK

U2 - 10.1007/PL00013454

DO - 10.1007/PL00013454

M3 - Article

AN - SCOPUS:0012943743

VL - 10

SP - 41

EP - 48

JO - Calculus of Variations and Partial Differential Equations

JF - Calculus of Variations and Partial Differential Equations

SN - 0944-2669

IS - 1

ER -

Von denselben Autoren