Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1777-1821 |
Seitenumfang | 45 |
Fachzeitschrift | Journal of high energy physics |
Jahrgang | 8 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 1 Jan. 2004 |
Abstract
The Bogomolny equations for Yang-Mills-Higgs monopoles follow from a system of linear equations which may be solved through a parametric Riemann-Hilbert problem. We extend this approach to noncommutative ℝ3 and use it to (re)construct noncommutative Dirac, Wu-Yang, and BPS monopole configurations in a unified manner. In all cases we write down the underlying matrix-valued functions for multi-monopoles and solve the corresponding Riemann-Hilbert problems for charge one.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Kern- und Hochenergiephysik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of high energy physics, Jahrgang 8, Nr. 1, 01.01.2004, S. 1777-1821.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Noncommutative monopoles and Riemann-Hilbert problems
AU - Lechtenfeld, Olaf
AU - Popov, Alexander D.
N1 - Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2004/1/1
Y1 - 2004/1/1
N2 - The Bogomolny equations for Yang-Mills-Higgs monopoles follow from a system of linear equations which may be solved through a parametric Riemann-Hilbert problem. We extend this approach to noncommutative ℝ3 and use it to (re)construct noncommutative Dirac, Wu-Yang, and BPS monopole configurations in a unified manner. In all cases we write down the underlying matrix-valued functions for multi-monopoles and solve the corresponding Riemann-Hilbert problems for charge one.
AB - The Bogomolny equations for Yang-Mills-Higgs monopoles follow from a system of linear equations which may be solved through a parametric Riemann-Hilbert problem. We extend this approach to noncommutative ℝ3 and use it to (re)construct noncommutative Dirac, Wu-Yang, and BPS monopole configurations in a unified manner. In all cases we write down the underlying matrix-valued functions for multi-monopoles and solve the corresponding Riemann-Hilbert problems for charge one.
KW - Integrable Equations in Physics
KW - Non-Commutative Geometry
KW - Solitons Monopoles and Instantons
UR - http://www.scopus.com/inward/record.url?scp=23144454274&partnerID=8YFLogxK
U2 - 10.1088/1126-6708/2004/01/069
DO - 10.1088/1126-6708/2004/01/069
M3 - Article
AN - SCOPUS:23144454274
VL - 8
SP - 1777
EP - 1821
JO - Journal of high energy physics
JF - Journal of high energy physics
SN - 1029-8479
IS - 1
ER -