Noncommutative monopoles and Riemann-Hilbert problems

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1777-1821
Seitenumfang45
FachzeitschriftJournal of high energy physics
Jahrgang8
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Jan. 2004

Abstract

The Bogomolny equations for Yang-Mills-Higgs monopoles follow from a system of linear equations which may be solved through a parametric Riemann-Hilbert problem. We extend this approach to noncommutative ℝ3 and use it to (re)construct noncommutative Dirac, Wu-Yang, and BPS monopole configurations in a unified manner. In all cases we write down the underlying matrix-valued functions for multi-monopoles and solve the corresponding Riemann-Hilbert problems for charge one.

ASJC Scopus Sachgebiete

Zitieren

Noncommutative monopoles and Riemann-Hilbert problems. / Lechtenfeld, Olaf; Popov, Alexander D.
in: Journal of high energy physics, Jahrgang 8, Nr. 1, 01.01.2004, S. 1777-1821.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Lechtenfeld O, Popov AD. Noncommutative monopoles and Riemann-Hilbert problems. Journal of high energy physics. 2004 Jan 1;8(1):1777-1821. doi: 10.1088/1126-6708/2004/01/069
Lechtenfeld, Olaf ; Popov, Alexander D. / Noncommutative monopoles and Riemann-Hilbert problems. in: Journal of high energy physics. 2004 ; Jahrgang 8, Nr. 1. S. 1777-1821.
Download
@article{989710babd1646dea22d5f6f1b1e5d8d,
title = "Noncommutative monopoles and Riemann-Hilbert problems",
abstract = "The Bogomolny equations for Yang-Mills-Higgs monopoles follow from a system of linear equations which may be solved through a parametric Riemann-Hilbert problem. We extend this approach to noncommutative ℝ3 and use it to (re)construct noncommutative Dirac, Wu-Yang, and BPS monopole configurations in a unified manner. In all cases we write down the underlying matrix-valued functions for multi-monopoles and solve the corresponding Riemann-Hilbert problems for charge one.",
keywords = "Integrable Equations in Physics, Non-Commutative Geometry, Solitons Monopoles and Instantons",
author = "Olaf Lechtenfeld and Popov, {Alexander D.}",
note = "Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2004",
month = jan,
day = "1",
doi = "10.1088/1126-6708/2004/01/069",
language = "English",
volume = "8",
pages = "1777--1821",
journal = "Journal of high energy physics",
issn = "1029-8479",
publisher = "Springer Verlag",
number = "1",

}

Download

TY - JOUR

T1 - Noncommutative monopoles and Riemann-Hilbert problems

AU - Lechtenfeld, Olaf

AU - Popov, Alexander D.

N1 - Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2004/1/1

Y1 - 2004/1/1

N2 - The Bogomolny equations for Yang-Mills-Higgs monopoles follow from a system of linear equations which may be solved through a parametric Riemann-Hilbert problem. We extend this approach to noncommutative ℝ3 and use it to (re)construct noncommutative Dirac, Wu-Yang, and BPS monopole configurations in a unified manner. In all cases we write down the underlying matrix-valued functions for multi-monopoles and solve the corresponding Riemann-Hilbert problems for charge one.

AB - The Bogomolny equations for Yang-Mills-Higgs monopoles follow from a system of linear equations which may be solved through a parametric Riemann-Hilbert problem. We extend this approach to noncommutative ℝ3 and use it to (re)construct noncommutative Dirac, Wu-Yang, and BPS monopole configurations in a unified manner. In all cases we write down the underlying matrix-valued functions for multi-monopoles and solve the corresponding Riemann-Hilbert problems for charge one.

KW - Integrable Equations in Physics

KW - Non-Commutative Geometry

KW - Solitons Monopoles and Instantons

UR - http://www.scopus.com/inward/record.url?scp=23144454274&partnerID=8YFLogxK

U2 - 10.1088/1126-6708/2004/01/069

DO - 10.1088/1126-6708/2004/01/069

M3 - Article

AN - SCOPUS:23144454274

VL - 8

SP - 1777

EP - 1821

JO - Journal of high energy physics

JF - Journal of high energy physics

SN - 1029-8479

IS - 1

ER -

Von denselben Autoren