Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 380-385 |
Seitenumfang | 6 |
Fachzeitschrift | AIP Conference Proceedings |
Jahrgang | 1353 |
Publikationsstatus | Veröffentlicht - 25 Apr. 2011 |
Abstract
Limited natural resources increase the demand on highly efficient machinery and transportation means. New energy-saving mobility concepts call for design optimisation through downsizing of components and choice of corrosion resistant materials possessing high strength to density ratios. Component downsizing can be performed either by constructive structural optimisation or by substituting heavy materials with lighter high-strength ones. In this context, forging plays an important role in manufacturing load-optimised structural components. At the Institute of Metal Forming and Metal-Forming Machines (IFUM) various innovative forging technologies have been developed. With regard to structural optimisation, different strategies for localised reinforcement of components were investigated. Locally induced strain hardening by means of cold forging under a superimposed hydrostatic pressure could be realised. In addition, controlled martensitic zones could be created through forming induced phase conversion in metastable austenitic steels. Other research focused on the replacement of heavy steel parts with high-strength nonferrous alloys or hybrid material compounds. Several forging processes of magnesium, aluminium and titanium alloys for different aeronautical and automotive applications were developed. The whole process chain from material characterisation via simulation-based process design to the production of the parts has been considered. The feasibility of forging complex shaped geometries using these alloys was confirmed. In spite of the difficulties encountered due to machine noise and high temperature, acoustic emission (AE) technique has been successfully applied for online monitoring of forging defects. New AE analysis algorithm has been developed, so that different signal patterns due to various events such as product/die cracking or die wear could be detected and classified. Further, the feasibility of the mentioned forging technologies was proven by means of the finite element analysis (FEA). For example, the integrity of forging dies with respect to crack initiation due to thermo-mechanical fatigue as well as the ductile damage of forgings was investigated with the help of cumulative damage models. In this paper some of the mentioned approaches are described.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: AIP Conference Proceedings, Jahrgang 1353, 25.04.2011, S. 380-385.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - New Trends in Forging Technologies
AU - Behrens, B. A.
AU - Hagen, T.
AU - Knigge, J.
AU - Elgaly, I.
AU - Hadifi, T.
AU - Bouguecha, A.
PY - 2011/4/25
Y1 - 2011/4/25
N2 - Limited natural resources increase the demand on highly efficient machinery and transportation means. New energy-saving mobility concepts call for design optimisation through downsizing of components and choice of corrosion resistant materials possessing high strength to density ratios. Component downsizing can be performed either by constructive structural optimisation or by substituting heavy materials with lighter high-strength ones. In this context, forging plays an important role in manufacturing load-optimised structural components. At the Institute of Metal Forming and Metal-Forming Machines (IFUM) various innovative forging technologies have been developed. With regard to structural optimisation, different strategies for localised reinforcement of components were investigated. Locally induced strain hardening by means of cold forging under a superimposed hydrostatic pressure could be realised. In addition, controlled martensitic zones could be created through forming induced phase conversion in metastable austenitic steels. Other research focused on the replacement of heavy steel parts with high-strength nonferrous alloys or hybrid material compounds. Several forging processes of magnesium, aluminium and titanium alloys for different aeronautical and automotive applications were developed. The whole process chain from material characterisation via simulation-based process design to the production of the parts has been considered. The feasibility of forging complex shaped geometries using these alloys was confirmed. In spite of the difficulties encountered due to machine noise and high temperature, acoustic emission (AE) technique has been successfully applied for online monitoring of forging defects. New AE analysis algorithm has been developed, so that different signal patterns due to various events such as product/die cracking or die wear could be detected and classified. Further, the feasibility of the mentioned forging technologies was proven by means of the finite element analysis (FEA). For example, the integrity of forging dies with respect to crack initiation due to thermo-mechanical fatigue as well as the ductile damage of forgings was investigated with the help of cumulative damage models. In this paper some of the mentioned approaches are described.
AB - Limited natural resources increase the demand on highly efficient machinery and transportation means. New energy-saving mobility concepts call for design optimisation through downsizing of components and choice of corrosion resistant materials possessing high strength to density ratios. Component downsizing can be performed either by constructive structural optimisation or by substituting heavy materials with lighter high-strength ones. In this context, forging plays an important role in manufacturing load-optimised structural components. At the Institute of Metal Forming and Metal-Forming Machines (IFUM) various innovative forging technologies have been developed. With regard to structural optimisation, different strategies for localised reinforcement of components were investigated. Locally induced strain hardening by means of cold forging under a superimposed hydrostatic pressure could be realised. In addition, controlled martensitic zones could be created through forming induced phase conversion in metastable austenitic steels. Other research focused on the replacement of heavy steel parts with high-strength nonferrous alloys or hybrid material compounds. Several forging processes of magnesium, aluminium and titanium alloys for different aeronautical and automotive applications were developed. The whole process chain from material characterisation via simulation-based process design to the production of the parts has been considered. The feasibility of forging complex shaped geometries using these alloys was confirmed. In spite of the difficulties encountered due to machine noise and high temperature, acoustic emission (AE) technique has been successfully applied for online monitoring of forging defects. New AE analysis algorithm has been developed, so that different signal patterns due to various events such as product/die cracking or die wear could be detected and classified. Further, the feasibility of the mentioned forging technologies was proven by means of the finite element analysis (FEA). For example, the integrity of forging dies with respect to crack initiation due to thermo-mechanical fatigue as well as the ductile damage of forgings was investigated with the help of cumulative damage models. In this paper some of the mentioned approaches are described.
KW - Acoustic emission
KW - Cold forging
KW - Damage models
KW - Downsizing
KW - Heatless hardening
KW - Online monitoring
KW - Superimposed hydrostatic pressure
KW - Transformation induced plasticity
UR - http://www.scopus.com/inward/record.url?scp=84882750025&partnerID=8YFLogxK
U2 - 10.1063/1.3589545
DO - 10.1063/1.3589545
M3 - Article
AN - SCOPUS:84882750025
VL - 1353
SP - 380
EP - 385
JO - AIP Conference Proceedings
JF - AIP Conference Proceedings
SN - 0094-243X
ER -