Neumann and second boundary value problems for Hessian and Gauß curvature flows

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Max-Planck-Institut für Mathematik in den Naturwissenschaften (MIS)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1043-1073
Seitenumfang31
FachzeitschriftAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
Jahrgang20
Ausgabenummer6
PublikationsstatusVeröffentlicht - 1 Jan. 2003
Extern publiziertJa

Abstract

We consider the flow of a strictly convex hypersurface driven by the Gauß curvature. For the Neumann boundary value problem and for the second boundary value problem we show that such a flow exists for all times and converges eventually to a solution of the prescribed Gauß curvature equation. We also discuss oblique boundary value problems and flows for Hessian equations.

ASJC Scopus Sachgebiete

Zitieren

Neumann and second boundary value problems for Hessian and Gauß curvature flows. / Schnürer, Oliver C.; Smoczyk, Knut.
in: Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, Jahrgang 20, Nr. 6, 01.01.2003, S. 1043-1073.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{188c7c0e3f5e4903adb34d07aa247f0a,
title = "Neumann and second boundary value problems for Hessian and Gau{\ss} curvature flows",
abstract = "We consider the flow of a strictly convex hypersurface driven by the Gau{\ss} curvature. For the Neumann boundary value problem and for the second boundary value problem we show that such a flow exists for all times and converges eventually to a solution of the prescribed Gau{\ss} curvature equation. We also discuss oblique boundary value problems and flows for Hessian equations.",
author = "Schn{\"u}rer, {Oliver C.} and Knut Smoczyk",
year = "2003",
month = jan,
day = "1",
doi = "10.1016/S0294-1449(03)00021-0",
language = "English",
volume = "20",
pages = "1043--1073",
journal = "Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire",
issn = "0294-1449",
publisher = "Elsevier Masson SAS",
number = "6",

}

Download

TY - JOUR

T1 - Neumann and second boundary value problems for Hessian and Gauß curvature flows

AU - Schnürer, Oliver C.

AU - Smoczyk, Knut

PY - 2003/1/1

Y1 - 2003/1/1

N2 - We consider the flow of a strictly convex hypersurface driven by the Gauß curvature. For the Neumann boundary value problem and for the second boundary value problem we show that such a flow exists for all times and converges eventually to a solution of the prescribed Gauß curvature equation. We also discuss oblique boundary value problems and flows for Hessian equations.

AB - We consider the flow of a strictly convex hypersurface driven by the Gauß curvature. For the Neumann boundary value problem and for the second boundary value problem we show that such a flow exists for all times and converges eventually to a solution of the prescribed Gauß curvature equation. We also discuss oblique boundary value problems and flows for Hessian equations.

UR - http://www.scopus.com/inward/record.url?scp=0346724414&partnerID=8YFLogxK

U2 - 10.1016/S0294-1449(03)00021-0

DO - 10.1016/S0294-1449(03)00021-0

M3 - Article

AN - SCOPUS:0346724414

VL - 20

SP - 1043

EP - 1073

JO - Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire

JF - Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire

SN - 0294-1449

IS - 6

ER -

Von denselben Autoren