Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 104368 |
Fachzeitschrift | Applied soil ecology |
Jahrgang | 172 |
Frühes Online-Datum | 23 Dez. 2021 |
Publikationsstatus | Veröffentlicht - Apr. 2022 |
Abstract
Apple replant disease affects tree nurseries and apple production globally. After repeated planting in the same soil, apple roots show accumulation of phytoalexins, stunting, and blackening. Recently, we showed that nematodes extracted from replanted soil and co-extracted microbes triggered these symptoms, while pathogens or plant-parasitic nematodes could not explain the early disease development. To identify nematode-microbe complexes that coincide with replant disease, apple rootstocks were grown in the greenhouse in soils from five replanted sites for eight weeks. Nematodes were extracted by floatation from pots with stunted or normal plant growth, washed on a 20-μm sieve, and used for DNA extraction. Nematode communities and co-extracted fungi and bacteria were analyzed by high-throughput sequencing of amplified ribosomal fragments. The experiment was repeated in the next year. Regardless of soil type or year, the nematode and fungal communities significantly differed between pots with differential plant growth. Bacteria were not significantly associated with growth depression. Plant-parasitic nematodes or pathogens were not abundant in numbers that could explain the observed root damage. Free-living nematodes Prsimatolaimus, Acrobeles, Tylencholaimus, Acrobeloides, and Aphelenchus, and associated fungi Exophiala, Hohenbuehelia, Naganishia, Psathyrella, and unidentified members of Orbiliales, Helotiales, and Rhytismataceae significantly correlated with reduced plant growth. Isolating and investigating such disease complexes will give a chance to understand external biotic stress of apple roots and design mitigation measures.
ASJC Scopus Sachgebiete
- Umweltwissenschaften (insg.)
- Ökologie
- Agrar- und Biowissenschaften (insg.)
- Agrar- und Biowissenschaften (sonstige)
- Agrar- und Biowissenschaften (insg.)
- Bodenkunde
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Applied soil ecology, Jahrgang 172, 104368, 04.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Networks of free-living nematodes and co-extracted fungi, associated with symptoms of apple replant disease
AU - Kanfra, Xorla
AU - Wrede, Andreas
AU - Mahnkopp-Dirks, Felix
AU - Winkelmann, Traud
AU - Heuer, Holger
N1 - Funding Information: This work was supported by the German Federal Ministry of Research and Education [grant number 031B0512B ].
PY - 2022/4
Y1 - 2022/4
N2 - Apple replant disease affects tree nurseries and apple production globally. After repeated planting in the same soil, apple roots show accumulation of phytoalexins, stunting, and blackening. Recently, we showed that nematodes extracted from replanted soil and co-extracted microbes triggered these symptoms, while pathogens or plant-parasitic nematodes could not explain the early disease development. To identify nematode-microbe complexes that coincide with replant disease, apple rootstocks were grown in the greenhouse in soils from five replanted sites for eight weeks. Nematodes were extracted by floatation from pots with stunted or normal plant growth, washed on a 20-μm sieve, and used for DNA extraction. Nematode communities and co-extracted fungi and bacteria were analyzed by high-throughput sequencing of amplified ribosomal fragments. The experiment was repeated in the next year. Regardless of soil type or year, the nematode and fungal communities significantly differed between pots with differential plant growth. Bacteria were not significantly associated with growth depression. Plant-parasitic nematodes or pathogens were not abundant in numbers that could explain the observed root damage. Free-living nematodes Prsimatolaimus, Acrobeles, Tylencholaimus, Acrobeloides, and Aphelenchus, and associated fungi Exophiala, Hohenbuehelia, Naganishia, Psathyrella, and unidentified members of Orbiliales, Helotiales, and Rhytismataceae significantly correlated with reduced plant growth. Isolating and investigating such disease complexes will give a chance to understand external biotic stress of apple roots and design mitigation measures.
AB - Apple replant disease affects tree nurseries and apple production globally. After repeated planting in the same soil, apple roots show accumulation of phytoalexins, stunting, and blackening. Recently, we showed that nematodes extracted from replanted soil and co-extracted microbes triggered these symptoms, while pathogens or plant-parasitic nematodes could not explain the early disease development. To identify nematode-microbe complexes that coincide with replant disease, apple rootstocks were grown in the greenhouse in soils from five replanted sites for eight weeks. Nematodes were extracted by floatation from pots with stunted or normal plant growth, washed on a 20-μm sieve, and used for DNA extraction. Nematode communities and co-extracted fungi and bacteria were analyzed by high-throughput sequencing of amplified ribosomal fragments. The experiment was repeated in the next year. Regardless of soil type or year, the nematode and fungal communities significantly differed between pots with differential plant growth. Bacteria were not significantly associated with growth depression. Plant-parasitic nematodes or pathogens were not abundant in numbers that could explain the observed root damage. Free-living nematodes Prsimatolaimus, Acrobeles, Tylencholaimus, Acrobeloides, and Aphelenchus, and associated fungi Exophiala, Hohenbuehelia, Naganishia, Psathyrella, and unidentified members of Orbiliales, Helotiales, and Rhytismataceae significantly correlated with reduced plant growth. Isolating and investigating such disease complexes will give a chance to understand external biotic stress of apple roots and design mitigation measures.
KW - Apple replant disease
KW - Association network
KW - Disease complex
KW - Free-living nematodes
KW - Nematode community
KW - Nematode-microbe interaction
UR - http://www.scopus.com/inward/record.url?scp=85121739023&partnerID=8YFLogxK
U2 - 10.1016/j.apsoil.2021.104368
DO - 10.1016/j.apsoil.2021.104368
M3 - Article
AN - SCOPUS:85121739023
VL - 172
JO - Applied soil ecology
JF - Applied soil ecology
SN - 0929-1393
M1 - 104368
ER -