Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 752-762 |
Seitenumfang | 11 |
Fachzeitschrift | Natural product reports |
Jahrgang | 37 |
Ausgabenummer | 6 |
Frühes Online-Datum | 19 Mai 2020 |
Publikationsstatus | Veröffentlicht - 1 Juni 2020 |
Abstract
Covering: 2000 to 2020 The translation of mRNA into proteins is a precisely regulated, complex process that can be divided into three main stages, i.e. initiation, elongation, termination, and recycling. This contribution is intended to highlight how natural products interfere with the elongation phase of eukaryotic protein biosynthesis. Cycloheximide, isolated from Streptomyces griseus, has long been the prototype inhibitor of eukaryotic translation elongation. In the last three decades, a variety of natural products from different origins were discovered to also address the elongation step in different manners, including interference with the elongation factors eEF1 and eEF2 as well as binding to A-, P-or E-sites of the ribosome itself. Recent advances in the crystallization of the ribosomal machinery together with natural product inhibitors allowed characterizing similarities as well as differences in their mode of action. Since aberrations in protein synthesis are commonly observed in tumors, and malfunction or overexpression of translation factors can cause cellular transformation, the protein synthesis machinery has been realized as an attractive target for anticancer drugs. The therapeutic use of the first natural products that reached market approval, plitidepsin (Aplidin®) and homoharringtonine (Synribo®), will be introduced. In addition, we will highlight two other potential indications for translation elongation inhibitors, i.e. viral infections and genetic disorders caused by premature termination of translation. This journal is
ASJC Scopus Sachgebiete
- Biochemie, Genetik und Molekularbiologie (insg.)
- Biochemie
- Pharmakologie, Toxikologie und Pharmazie (insg.)
- Wirkstoffforschung
- Chemie (insg.)
- Organische Chemie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Natural product reports, Jahrgang 37, Nr. 6, 01.06.2020, S. 752-762.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Natural products targeting the elongation phase of eukaryotic protein biosynthesis
AU - Brönstrup, Mark
AU - Sasse, Florenz
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Covering: 2000 to 2020 The translation of mRNA into proteins is a precisely regulated, complex process that can be divided into three main stages, i.e. initiation, elongation, termination, and recycling. This contribution is intended to highlight how natural products interfere with the elongation phase of eukaryotic protein biosynthesis. Cycloheximide, isolated from Streptomyces griseus, has long been the prototype inhibitor of eukaryotic translation elongation. In the last three decades, a variety of natural products from different origins were discovered to also address the elongation step in different manners, including interference with the elongation factors eEF1 and eEF2 as well as binding to A-, P-or E-sites of the ribosome itself. Recent advances in the crystallization of the ribosomal machinery together with natural product inhibitors allowed characterizing similarities as well as differences in their mode of action. Since aberrations in protein synthesis are commonly observed in tumors, and malfunction or overexpression of translation factors can cause cellular transformation, the protein synthesis machinery has been realized as an attractive target for anticancer drugs. The therapeutic use of the first natural products that reached market approval, plitidepsin (Aplidin®) and homoharringtonine (Synribo®), will be introduced. In addition, we will highlight two other potential indications for translation elongation inhibitors, i.e. viral infections and genetic disorders caused by premature termination of translation. This journal is
AB - Covering: 2000 to 2020 The translation of mRNA into proteins is a precisely regulated, complex process that can be divided into three main stages, i.e. initiation, elongation, termination, and recycling. This contribution is intended to highlight how natural products interfere with the elongation phase of eukaryotic protein biosynthesis. Cycloheximide, isolated from Streptomyces griseus, has long been the prototype inhibitor of eukaryotic translation elongation. In the last three decades, a variety of natural products from different origins were discovered to also address the elongation step in different manners, including interference with the elongation factors eEF1 and eEF2 as well as binding to A-, P-or E-sites of the ribosome itself. Recent advances in the crystallization of the ribosomal machinery together with natural product inhibitors allowed characterizing similarities as well as differences in their mode of action. Since aberrations in protein synthesis are commonly observed in tumors, and malfunction or overexpression of translation factors can cause cellular transformation, the protein synthesis machinery has been realized as an attractive target for anticancer drugs. The therapeutic use of the first natural products that reached market approval, plitidepsin (Aplidin®) and homoharringtonine (Synribo®), will be introduced. In addition, we will highlight two other potential indications for translation elongation inhibitors, i.e. viral infections and genetic disorders caused by premature termination of translation. This journal is
UR - http://www.scopus.com/inward/record.url?scp=85087111247&partnerID=8YFLogxK
U2 - 10.1039/d0np00011f
DO - 10.1039/d0np00011f
M3 - Article
C2 - 32428051
AN - SCOPUS:85087111247
VL - 37
SP - 752
EP - 762
JO - Natural product reports
JF - Natural product reports
SN - 0265-0568
IS - 6
ER -