Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 2889 |
Fachzeitschrift | Physical review letters |
Jahrgang | 84 |
Ausgabenummer | 13 |
Publikationsstatus | Veröffentlicht - 27 März 2000 |
Abstract
We study ionic transport in nano- and microcrystalline (1 - x)Li 2O:xB2O3 composites using standard impedance spectroscopy. In the nanocrystalline samples (average grain size of about 20 nm), the ionic conductivity σdc increases with increasing content x of B2O3 up to a maximum at x ≈ 0.5. Above x ≈ 0.92, σdc vanishes. By contrast, in the microcrystalline samples (grain size about 10 μm), σdc decreases monotonically with x and vanishes above x ≈ 0.55. We can explain this strikingly different behavior by a percolation model that assumes an enhanced conductivity at the interfaces between insulating and conducting phases in both materials and explicitly takes into account the different grain sizes.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical review letters, Jahrgang 84, Nr. 13, 2889, 27.03.2000.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Nanocrystalline versus microcrystalline Lo2O:B2O 3 composites
T2 - Anomalous ionic conductivities and percolation theory
AU - Indris, Sylvio
AU - Heitjans, Paul
AU - Eduarde Roman, H.
AU - Bunde, Armin
PY - 2000/3/27
Y1 - 2000/3/27
N2 - We study ionic transport in nano- and microcrystalline (1 - x)Li 2O:xB2O3 composites using standard impedance spectroscopy. In the nanocrystalline samples (average grain size of about 20 nm), the ionic conductivity σdc increases with increasing content x of B2O3 up to a maximum at x ≈ 0.5. Above x ≈ 0.92, σdc vanishes. By contrast, in the microcrystalline samples (grain size about 10 μm), σdc decreases monotonically with x and vanishes above x ≈ 0.55. We can explain this strikingly different behavior by a percolation model that assumes an enhanced conductivity at the interfaces between insulating and conducting phases in both materials and explicitly takes into account the different grain sizes.
AB - We study ionic transport in nano- and microcrystalline (1 - x)Li 2O:xB2O3 composites using standard impedance spectroscopy. In the nanocrystalline samples (average grain size of about 20 nm), the ionic conductivity σdc increases with increasing content x of B2O3 up to a maximum at x ≈ 0.5. Above x ≈ 0.92, σdc vanishes. By contrast, in the microcrystalline samples (grain size about 10 μm), σdc decreases monotonically with x and vanishes above x ≈ 0.55. We can explain this strikingly different behavior by a percolation model that assumes an enhanced conductivity at the interfaces between insulating and conducting phases in both materials and explicitly takes into account the different grain sizes.
UR - http://www.scopus.com/inward/record.url?scp=0000258314&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.84.2889
DO - 10.1103/PhysRevLett.84.2889
M3 - Article
AN - SCOPUS:0000258314
VL - 84
JO - Physical review letters
JF - Physical review letters
SN - 0031-9007
IS - 13
M1 - 2889
ER -