Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 865517 |
Fachzeitschrift | Frontiers in Soil Science |
Jahrgang | 2 |
Publikationsstatus | Veröffentlicht - 4 Apr. 2022 |
Abstract
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Bodenkunde
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Frontiers in Soil Science, Jahrgang 2, 865517, 04.04.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Mycorrhizal Mediated Partitioning of Phosphorus: Ectomycorrhizal (Populus x canescens x Paxillus involutus) Potential to Exploit Simultaneously Organic and Mineral Phosphorus Sources
AU - Schreider, Katharina
AU - Hofmann, Diana
AU - Boy, Jens
AU - Andrino de la Fuente, Alberto
AU - Fernandes Figueiredo, Aline
AU - Sauheitl, L
AU - Guggenberger, Georg
N1 - Funding Information: We want to thank the German Federal Ministry of Education and Research for the funding of this project in the framework of the DFG-RTG 1798 Signaling at the Plant-Soil Interface. The publication of this article was funded by the Open Access fund of Leibniz Universität Hannover. Funding Information: The authors are thankful for the great help and guidance received by Traud Winkelmann, Maximillian Koch, Stephan Köppchen, Nina Siebers, Jens Kruse, Anne Herwig, and Viola Rünzi. The plant material (P. x canescens clone Schleswig I) was kindly provided by Andreas Meier-Dinkel from the Nordwestdeutsche Versuchsanstalt (Germany). The ecto-mycorrhizal fungal material, P. involutus, was kindly provided by Andrea Polle, Abteilung Forstbotanik und Baumphysiologie (Büsgen-Institut, Georg-August Universität Göttingen, Germany).
PY - 2022/4/4
Y1 - 2022/4/4
N2 - Many natural and anthropogenic soils are phosphorus (P) limited often due to larger P stocks sequestered in forms of low bioavailability. One of the strategies to overcome this shortage lies in the symbiosis of plants with mycorrhizal fungi, increasing the plant P uptake of these hardly accessible sources. However, little is known about mycorrhizal fungal mediated partitioning of differently available P forms, which could contribute to more efficient use of P by plants and, thereby, reduce competition for soil P. This study aimed to investigate the uptake of P from differently bioavailable P sources by ectomycorrhiza. For that, we conducted a rhizotrone study using Populus x canescens and its compatible ectomycorrhizal fungus Paxillus involutus. Four different P sources [ortho-phosphate (oP), adenosine monophosphate (AMP), hydroxyapatite (HAP), and oP bound to goethite (gP)] or only HAP as 1P control were supplied in separate compartments, where only the fungal partner had access to the P sources. The amount of the specific P sources was increased according to their decreasing bioavailability. In order to distinguish between the P sources, we applied 33P to track its incorporation in plants by a non-destructive analysis via digital autoradiography. Our results show that an ectomycorrhizal plant is able to utilize all provided P sources via its mycorrhizal fungal associate. The acquisition timing was determined by the most bioavailable P sources, with oP and AMP over HAP and gP, and a mixed P pool over a single P source. In contrast, the magnitude was defined by the by the amount of supplied P source provision of additional nitrogen, hence AMP over oP and gP, as well as by P source complexity, with gP as the least favorable P form. Nevertheless, the results of the present study provide evidence that an ectomycorrhiza has the potential to occupy fundamental niches of various P sources differing in their bioavailability, indicating that being a generalist in P nutrition can facilitate adaptation to various nutritional settings in soil
AB - Many natural and anthropogenic soils are phosphorus (P) limited often due to larger P stocks sequestered in forms of low bioavailability. One of the strategies to overcome this shortage lies in the symbiosis of plants with mycorrhizal fungi, increasing the plant P uptake of these hardly accessible sources. However, little is known about mycorrhizal fungal mediated partitioning of differently available P forms, which could contribute to more efficient use of P by plants and, thereby, reduce competition for soil P. This study aimed to investigate the uptake of P from differently bioavailable P sources by ectomycorrhiza. For that, we conducted a rhizotrone study using Populus x canescens and its compatible ectomycorrhizal fungus Paxillus involutus. Four different P sources [ortho-phosphate (oP), adenosine monophosphate (AMP), hydroxyapatite (HAP), and oP bound to goethite (gP)] or only HAP as 1P control were supplied in separate compartments, where only the fungal partner had access to the P sources. The amount of the specific P sources was increased according to their decreasing bioavailability. In order to distinguish between the P sources, we applied 33P to track its incorporation in plants by a non-destructive analysis via digital autoradiography. Our results show that an ectomycorrhizal plant is able to utilize all provided P sources via its mycorrhizal fungal associate. The acquisition timing was determined by the most bioavailable P sources, with oP and AMP over HAP and gP, and a mixed P pool over a single P source. In contrast, the magnitude was defined by the by the amount of supplied P source provision of additional nitrogen, hence AMP over oP and gP, as well as by P source complexity, with gP as the least favorable P form. Nevertheless, the results of the present study provide evidence that an ectomycorrhiza has the potential to occupy fundamental niches of various P sources differing in their bioavailability, indicating that being a generalist in P nutrition can facilitate adaptation to various nutritional settings in soil
KW - adenosine monophosphate
KW - ectomycorrhizal fungi
KW - goethite P complex
KW - hydroxyapatite
KW - P availability
KW - P diversity
KW - radioactive labeling
KW - resource partitioning
UR - http://www.scopus.com/inward/record.url?scp=85163619940&partnerID=8YFLogxK
U2 - 10.3389/fsoil.2022.865517
DO - 10.3389/fsoil.2022.865517
M3 - Article
VL - 2
JO - Frontiers in Soil Science
JF - Frontiers in Soil Science
SN - 2673-8619
M1 - 865517
ER -