Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 255-277 |
Seitenumfang | 23 |
Fachzeitschrift | Numerical algorithms |
Jahrgang | 2 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Okt. 1992 |
Abstract
This is the second part of a note on interpolation by real polynomials of several real variables. For certain regular knot systems (geometric or regular meshes, tensor product grids), Neville-Aitken algorithms are derived explicitly. By application of a projectivity they can be extended in a simple way to arbitrary (k+1)-pencil lattices as recently introduced by Lee and Phillips. A numerical example is given.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Numerical algorithms, Jahrgang 2, Nr. 3, 10.1992, S. 255-277.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Multivariate polynomial interpolation under projectivities II
T2 - Neville-Aitken formulas
AU - Gasca, M.
AU - Mühlbach, G.
PY - 1992/10
Y1 - 1992/10
N2 - This is the second part of a note on interpolation by real polynomials of several real variables. For certain regular knot systems (geometric or regular meshes, tensor product grids), Neville-Aitken algorithms are derived explicitly. By application of a projectivity they can be extended in a simple way to arbitrary (k+1)-pencil lattices as recently introduced by Lee and Phillips. A numerical example is given.
AB - This is the second part of a note on interpolation by real polynomials of several real variables. For certain regular knot systems (geometric or regular meshes, tensor product grids), Neville-Aitken algorithms are derived explicitly. By application of a projectivity they can be extended in a simple way to arbitrary (k+1)-pencil lattices as recently introduced by Lee and Phillips. A numerical example is given.
KW - multivariate polynomials
KW - Neville-Aitken
KW - Polynomial interpolation
KW - projectivities
KW - Subject classifications: 65D05, 41A05, 41A63
UR - http://www.scopus.com/inward/record.url?scp=0005467482&partnerID=8YFLogxK
U2 - 10.1007/BF02139467
DO - 10.1007/BF02139467
M3 - Article
AN - SCOPUS:0005467482
VL - 2
SP - 255
EP - 277
JO - Numerical algorithms
JF - Numerical algorithms
SN - 1017-1398
IS - 3
ER -