Multistable morphing structures using variable stiffness laminates

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Ayan Haldar

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoktor der Ingenieurwissenschaften
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades9 Okt. 2019
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2020

Abstract

Mit zunehmender Thematisierung des Klimawandels vertiefen auch immer mehr Branchen und Forschungseinrichtungen die Suche nach ökologischen Energiequellen. Windenergie ist eine der billigsten sauberen Energieformen und somit eine attraktive Alternative zu nicht erneuerbaren Energien. Das Hochskalieren von Windkraftanlagen gilt klassischerweise als Mittel zur Kostensenkung je Kilowattstunde und ist nach wie vor im Trend. Mit zunehmender Größe der Rotorblätter von Windkraftanlagen besteht jedoch die Notwendigkeit, Konstruktionen zu entwickeln, die in der Lage sind, Extrem- und Ermüdungslasten zu reduzieren. Die aktive Hinterkantenklappe ist ein vielversprechendes Konzept zur Entlastung großer Rotorblätter von Windkraftanlagen. Die meisten existierenden Klappenmechanismen haben zwar das Potenzial zu einer schnellen Reaktionszeit, und damit verbundener Lastreduktion, sind aber oft mit komplizierten Aktuator-Systemen verbunden, was zu zusätzlichem Gewicht und zunehmender Komplexität führt. Darüber hinaus erfordern sie eine kontinuierliche Energiezufuhr, um eine bestimmte Position der Klappe beizubehalten. Multistabile Laminate mit variabler Steifigkeit (VS) haben ein großes Potenzial bei Morphing-Anwendungen, in erster Linie aufgrund der Existenz mehrerer stabiler Gleichgewichtslagen. Der Einsatz von VS-Laminaten mit kurvenförmigen Faserbahnen ermöglicht es, die Leistungsfähigkeit von multistabilen Laminaten als Morphing-Strukturen weiter zu verbessern. Das Hauptziel dieser Arbeit ist es, die Eigenschaften von multistabilen VS-Laminaten nutzbar zu machen, und sie bei einem neuartigen Entwurf von Morphing-Hinterkantenklappen anzuwenden. Um dies zu erreichen, bedarf es nicht nur der Entwicklung numerischer und analytischer Werkzeuge, sondern auch eines geeigneten Entwurfes, um die VS-Eigenschaften in eine Morphing-Klappe zu integrieren. Daher wird in dieser Arbeit ein schnelles semi-analytisches Berechnungsverfahren entwickelt, um stabile Gleichgewichtslagen von VS-Laminaten vorherzusagen. Darüber hinaus wird in einer systematischen Studie untersucht, wie sich die stabilen Zustände bei Variation der kurvenförmigen Faserbahnen ändern. Als Ergebnis dieser Untersuchungen wurden Kriterien abgeleitet durch die VS-Laminate in Familien mit gleichartigen multistabilen Gleichgewichtslagen eingeteilt werden können. Dies ist wiederum für den vorgesehenen Entwurf der Morphing-Klappe erforderlich. Durchschlagen, d. h. der Übergang von einer Gleichgewichtslage zur nächsten, ist ein wesentlicher Prozess bei der Charakterisierung multistabiler Laminate in Morphing-Anwendungen. Zwei unterschiedliche Durchschlagsmechanismen werden hier untersucht, einer mit Hilfe konzentrierter Krafteinleitung, und der andere mit piezoelektrischen Aktuatoren. Das oben genannte semi-analytische Berechnungsverfahren verschafft Einblicke in die zugrundeliegende Mechanik sowie die Eigenschaften des Durchschlagsprozesses. Die Erkenntnisse aus den semi-analytischen Berechnungen ermöglichen Entwurf und Analyse komplexerer multistabiler Rechteckplatten. Es wird der optimale Entwurf von rechteckigen Platten mit Aktuatoren bestimmt, der zu einer maximalen Verschiebung außerhalb der Ebene führt, jedoch eine minimale Durchschlagspannung erfordert. Ein neuartiges Konzept einer Morphing-Hinterkantenklappe mit integrierten rechteckigen bistabilen Platten wird vorgestellt. In diesem neuen Konzept ist die Auslenkung der Hinterkante durch multistabile Platten realisiert. Die Verifikation des vorgeschlagenen Morphing-Mechanismus wird mittels Finite Elemente-Software erbracht.

Zitieren

Multistable morphing structures using variable stiffness laminates. / Haldar, Ayan.
Hannover, 2020. 212 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Haldar, A 2020, 'Multistable morphing structures using variable stiffness laminates', Doktor der Ingenieurwissenschaften, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/10001
Haldar, A. (2020). Multistable morphing structures using variable stiffness laminates. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/10001
Haldar A. Multistable morphing structures using variable stiffness laminates. Hannover, 2020. 212 S. doi: 10.15488/10001
Download
@phdthesis{834043d331084b5bbc4dfb3a7a93cece,
title = "Multistable morphing structures using variable stiffness laminates",
abstract = "As the concern about climate change grows, more industries and research organizations are stepping up in search of viable solutions. Wind energy is one of the cheapest clean forms of energy, making it an attractive alternative against non-renewable sources. Upscaling of wind turbine has traditionally been considered a means to decrease the cost per kWh, and it remains a trend. However, with an increase in the size of wind turbine rotor blades, there is a need to conceptualize designs capable of reducing ultimate and fatigue loads. Active trailing edge flap is one such promising concept to alleviate loads in large wind turbine blades. Most existing flap mechanisms have the potential for quick reaction time, but it often involves intricate actuation systems, adding additional weight and complexity. Moreover, it requires a continuous supply of energy input to maintain a particular position of the flap. Multistable variable stiffness (VS) laminates have a great potential in morphing applications primarily due to the existence of multiple stable shapes. The use of VS laminates with curvilinear fiber paths allows one to improve further the performance of multistable laminates as morphing structures. The principal aim of this thesis is to exploit the properties of multistable VS laminates and apply them to a novel design of morphing trailing edge flap. This requires not only developing numerical and analytical tools, but also a suitable design to integrate VS laminates into a morphing flap. Therefore in this work, a fast semi-analytical tool is developed to predict the stable shapes of VS laminates. In addition, a systematic study is carried out to investigate the variation the curvilinear fiber paths on the stable equilibrium shapes. As a result of these investigations, VS laminates could be classified into families with similar multistable equilibrium positions. This, in turn, is applied to the envisaged design of the morphing flap. Snap-through, which is a transition from one equilibrium state to another, is a crucial process to characterize multistable laminates in morphing applications. Two different snapping mechanisms are studied, one using concentrated force and the other using piezoelectric actuators. The extension of the aforementioned semi-analytical tool provides insights that reflect the underlying mechanics and characteristics of the snap-through process. The knowledge gained from the semi-analytical calculations facilitates the design and analysis of more complex multistable rectangular plates. Optimal design of rectangular plates with actuators that leads to maximum out-of-plane displacement but with minimum snap-through voltage is determined. A novel concept of a morphing trailing edge flap with integrated rectangular bistable plates is proposed. In this new concept, the trailing edge deflection is realized by the snap-through of the multistable rectangular plates. The viability of the proposed morphing mechanism is examined using finite element tools.",
author = "Ayan Haldar",
note = "Doctoral thesis",
year = "2020",
doi = "10.15488/10001",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Multistable morphing structures using variable stiffness laminates

AU - Haldar, Ayan

N1 - Doctoral thesis

PY - 2020

Y1 - 2020

N2 - As the concern about climate change grows, more industries and research organizations are stepping up in search of viable solutions. Wind energy is one of the cheapest clean forms of energy, making it an attractive alternative against non-renewable sources. Upscaling of wind turbine has traditionally been considered a means to decrease the cost per kWh, and it remains a trend. However, with an increase in the size of wind turbine rotor blades, there is a need to conceptualize designs capable of reducing ultimate and fatigue loads. Active trailing edge flap is one such promising concept to alleviate loads in large wind turbine blades. Most existing flap mechanisms have the potential for quick reaction time, but it often involves intricate actuation systems, adding additional weight and complexity. Moreover, it requires a continuous supply of energy input to maintain a particular position of the flap. Multistable variable stiffness (VS) laminates have a great potential in morphing applications primarily due to the existence of multiple stable shapes. The use of VS laminates with curvilinear fiber paths allows one to improve further the performance of multistable laminates as morphing structures. The principal aim of this thesis is to exploit the properties of multistable VS laminates and apply them to a novel design of morphing trailing edge flap. This requires not only developing numerical and analytical tools, but also a suitable design to integrate VS laminates into a morphing flap. Therefore in this work, a fast semi-analytical tool is developed to predict the stable shapes of VS laminates. In addition, a systematic study is carried out to investigate the variation the curvilinear fiber paths on the stable equilibrium shapes. As a result of these investigations, VS laminates could be classified into families with similar multistable equilibrium positions. This, in turn, is applied to the envisaged design of the morphing flap. Snap-through, which is a transition from one equilibrium state to another, is a crucial process to characterize multistable laminates in morphing applications. Two different snapping mechanisms are studied, one using concentrated force and the other using piezoelectric actuators. The extension of the aforementioned semi-analytical tool provides insights that reflect the underlying mechanics and characteristics of the snap-through process. The knowledge gained from the semi-analytical calculations facilitates the design and analysis of more complex multistable rectangular plates. Optimal design of rectangular plates with actuators that leads to maximum out-of-plane displacement but with minimum snap-through voltage is determined. A novel concept of a morphing trailing edge flap with integrated rectangular bistable plates is proposed. In this new concept, the trailing edge deflection is realized by the snap-through of the multistable rectangular plates. The viability of the proposed morphing mechanism is examined using finite element tools.

AB - As the concern about climate change grows, more industries and research organizations are stepping up in search of viable solutions. Wind energy is one of the cheapest clean forms of energy, making it an attractive alternative against non-renewable sources. Upscaling of wind turbine has traditionally been considered a means to decrease the cost per kWh, and it remains a trend. However, with an increase in the size of wind turbine rotor blades, there is a need to conceptualize designs capable of reducing ultimate and fatigue loads. Active trailing edge flap is one such promising concept to alleviate loads in large wind turbine blades. Most existing flap mechanisms have the potential for quick reaction time, but it often involves intricate actuation systems, adding additional weight and complexity. Moreover, it requires a continuous supply of energy input to maintain a particular position of the flap. Multistable variable stiffness (VS) laminates have a great potential in morphing applications primarily due to the existence of multiple stable shapes. The use of VS laminates with curvilinear fiber paths allows one to improve further the performance of multistable laminates as morphing structures. The principal aim of this thesis is to exploit the properties of multistable VS laminates and apply them to a novel design of morphing trailing edge flap. This requires not only developing numerical and analytical tools, but also a suitable design to integrate VS laminates into a morphing flap. Therefore in this work, a fast semi-analytical tool is developed to predict the stable shapes of VS laminates. In addition, a systematic study is carried out to investigate the variation the curvilinear fiber paths on the stable equilibrium shapes. As a result of these investigations, VS laminates could be classified into families with similar multistable equilibrium positions. This, in turn, is applied to the envisaged design of the morphing flap. Snap-through, which is a transition from one equilibrium state to another, is a crucial process to characterize multistable laminates in morphing applications. Two different snapping mechanisms are studied, one using concentrated force and the other using piezoelectric actuators. The extension of the aforementioned semi-analytical tool provides insights that reflect the underlying mechanics and characteristics of the snap-through process. The knowledge gained from the semi-analytical calculations facilitates the design and analysis of more complex multistable rectangular plates. Optimal design of rectangular plates with actuators that leads to maximum out-of-plane displacement but with minimum snap-through voltage is determined. A novel concept of a morphing trailing edge flap with integrated rectangular bistable plates is proposed. In this new concept, the trailing edge deflection is realized by the snap-through of the multistable rectangular plates. The viability of the proposed morphing mechanism is examined using finite element tools.

U2 - 10.15488/10001

DO - 10.15488/10001

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren