Multiplicative relations among differences of singular moduli

Publikation: Arbeitspapier/PreprintPreprint

Autoren

  • Vahagn Aslanyan
  • Sebastian Eterović
  • Guy Fowler
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 23 Aug. 2023

Abstract

Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).

Zitieren

Multiplicative relations among differences of singular moduli. / Aslanyan, Vahagn; Eterović, Sebastian; Fowler, Guy.
2023.

Publikation: Arbeitspapier/PreprintPreprint

Aslanyan, V., Eterović, S., & Fowler, G. (2023). Multiplicative relations among differences of singular moduli. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2308.12244
Aslanyan V, Eterović S, Fowler G. Multiplicative relations among differences of singular moduli. 2023 Aug 23. Epub 2023 Aug 23. doi: 10.48550/arXiv.2308.12244
Aslanyan, Vahagn ; Eterović, Sebastian ; Fowler, Guy. / Multiplicative relations among differences of singular moduli. 2023.
Download
@techreport{e135dba679eb41969d72d166f62614e8,
title = "Multiplicative relations among differences of singular moduli",
abstract = " Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\). ",
keywords = "math.NT",
author = "Vahagn Aslanyan and Sebastian Eterovi{\'c} and Guy Fowler",
note = "36 pages",
year = "2023",
month = aug,
day = "23",
doi = "10.48550/arXiv.2308.12244",
language = "English",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Multiplicative relations among differences of singular moduli

AU - Aslanyan, Vahagn

AU - Eterović, Sebastian

AU - Fowler, Guy

N1 - 36 pages

PY - 2023/8/23

Y1 - 2023/8/23

N2 - Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).

AB - Let \(n \in \mathbb{Z}_{>0}\). We prove that there exist a finite set \(V\) and finitely many algebraic curves \(T_1, \ldots, T_k\) with the following property: if \((x_1, \ldots, x_n, y)\) is an \((n+1)\)-tuple of pairwise distinct singular moduli such that \(\prod_{i=1}^n (x_i - y)^{a_i}=1\) for some \(a_1, \ldots, a_n \in \mathbb{Z} \setminus \{0\}\), then \((x_1, \ldots, x_n, y) \in V \cup T_1 \cup \ldots \cup T_k\). Further, the curves \(T_1, \ldots, T_k\) may be determined explicitly for a given \(n\).

KW - math.NT

U2 - 10.48550/arXiv.2308.12244

DO - 10.48550/arXiv.2308.12244

M3 - Preprint

BT - Multiplicative relations among differences of singular moduli

ER -