Multimodal metadata assignment for cultural heritage artifacts

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Luis Rei
  • Dunja Mladenic
  • Mareike Dorozynski
  • Franz Rottensteiner
  • Thomas Schleider
  • Raphaël Troncy
  • Jorge Sebastián Lozano
  • Mar Gaitán Salvatella

Externe Organisationen

  • Institut "Jožef Stefan" (IJS)
  • EURECOM - Graduate School and Research Center in Digital Sciences
  • Universitat de Valencia
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)847-869
Seitenumfang23
FachzeitschriftMultimedia systems
Jahrgang29
Ausgabenummer2
Frühes Online-Datum21 Nov. 2022
PublikationsstatusVeröffentlicht - Apr. 2023

Abstract

We develop a multimodal classifier for the cultural heritage domain using a late fusion approach and introduce a novel dataset. The three modalities are Image, Text, and Tabular data. We based the image classifier on a ResNet convolutional neural network architecture and the text classifier on a multilingual transformer architecture (XML-Roberta). Both are trained as multitask classifiers. Tabular data and late fusion are handled by Gradient Tree Boosting. We also show how we leveraged a specific data model and taxonomy in a Knowledge Graph to create the dataset and to store classification results.

ASJC Scopus Sachgebiete

Zitieren

Multimodal metadata assignment for cultural heritage artifacts. / Rei, Luis; Mladenic, Dunja; Dorozynski, Mareike et al.
in: Multimedia systems, Jahrgang 29, Nr. 2, 04.2023, S. 847-869.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Rei, L, Mladenic, D, Dorozynski, M, Rottensteiner, F, Schleider, T, Troncy, R, Lozano, JS & Salvatella, MG 2023, 'Multimodal metadata assignment for cultural heritage artifacts', Multimedia systems, Jg. 29, Nr. 2, S. 847-869. https://doi.org/10.21203/rs.3.rs-1708875/v1, https://doi.org/10.1007/s00530-022-01025-2
Rei, L., Mladenic, D., Dorozynski, M., Rottensteiner, F., Schleider, T., Troncy, R., Lozano, J. S., & Salvatella, M. G. (2023). Multimodal metadata assignment for cultural heritage artifacts. Multimedia systems, 29(2), 847-869. https://doi.org/10.21203/rs.3.rs-1708875/v1, https://doi.org/10.1007/s00530-022-01025-2
Rei L, Mladenic D, Dorozynski M, Rottensteiner F, Schleider T, Troncy R et al. Multimodal metadata assignment for cultural heritage artifacts. Multimedia systems. 2023 Apr;29(2):847-869. Epub 2022 Nov 21. doi: 10.21203/rs.3.rs-1708875/v1, 10.1007/s00530-022-01025-2
Rei, Luis ; Mladenic, Dunja ; Dorozynski, Mareike et al. / Multimodal metadata assignment for cultural heritage artifacts. in: Multimedia systems. 2023 ; Jahrgang 29, Nr. 2. S. 847-869.
Download
@article{a09b09849af44f7599f57baa14e242fd,
title = "Multimodal metadata assignment for cultural heritage artifacts",
abstract = "We develop a multimodal classifier for the cultural heritage domain using a late fusion approach and introduce a novel dataset. The three modalities are Image, Text, and Tabular data. We based the image classifier on a ResNet convolutional neural network architecture and the text classifier on a multilingual transformer architecture (XML-Roberta). Both are trained as multitask classifiers. Tabular data and late fusion are handled by Gradient Tree Boosting. We also show how we leveraged a specific data model and taxonomy in a Knowledge Graph to create the dataset and to store classification results.",
keywords = "Convolutional neural networks, Cultural heritage, Deep learning, Image classification, Multilingual, Multimodal, Text classification, Transformer",
author = "Luis Rei and Dunja Mladenic and Mareike Dorozynski and Franz Rottensteiner and Thomas Schleider and Rapha{\"e}l Troncy and Lozano, {Jorge Sebasti{\'a}n} and Salvatella, {Mar Gait{\'a}n}",
note = "Funding Information: This work was supported by the Slovenian Research Agency and the European Union{\textquoteright}s Horizon 2020 research and innovation program under SILKNOW grant agreement No. 769504. ",
year = "2023",
month = apr,
doi = "10.21203/rs.3.rs-1708875/v1",
language = "English",
volume = "29",
pages = "847--869",
journal = "Multimedia systems",
issn = "0942-4962",
publisher = "Springer Verlag",
number = "2",

}

Download

TY - JOUR

T1 - Multimodal metadata assignment for cultural heritage artifacts

AU - Rei, Luis

AU - Mladenic, Dunja

AU - Dorozynski, Mareike

AU - Rottensteiner, Franz

AU - Schleider, Thomas

AU - Troncy, Raphaël

AU - Lozano, Jorge Sebastián

AU - Salvatella, Mar Gaitán

N1 - Funding Information: This work was supported by the Slovenian Research Agency and the European Union’s Horizon 2020 research and innovation program under SILKNOW grant agreement No. 769504.

PY - 2023/4

Y1 - 2023/4

N2 - We develop a multimodal classifier for the cultural heritage domain using a late fusion approach and introduce a novel dataset. The three modalities are Image, Text, and Tabular data. We based the image classifier on a ResNet convolutional neural network architecture and the text classifier on a multilingual transformer architecture (XML-Roberta). Both are trained as multitask classifiers. Tabular data and late fusion are handled by Gradient Tree Boosting. We also show how we leveraged a specific data model and taxonomy in a Knowledge Graph to create the dataset and to store classification results.

AB - We develop a multimodal classifier for the cultural heritage domain using a late fusion approach and introduce a novel dataset. The three modalities are Image, Text, and Tabular data. We based the image classifier on a ResNet convolutional neural network architecture and the text classifier on a multilingual transformer architecture (XML-Roberta). Both are trained as multitask classifiers. Tabular data and late fusion are handled by Gradient Tree Boosting. We also show how we leveraged a specific data model and taxonomy in a Knowledge Graph to create the dataset and to store classification results.

KW - Convolutional neural networks

KW - Cultural heritage

KW - Deep learning

KW - Image classification

KW - Multilingual

KW - Multimodal

KW - Text classification

KW - Transformer

UR - http://www.scopus.com/inward/record.url?scp=85142285336&partnerID=8YFLogxK

U2 - 10.21203/rs.3.rs-1708875/v1

DO - 10.21203/rs.3.rs-1708875/v1

M3 - Article

AN - SCOPUS:85142285336

VL - 29

SP - 847

EP - 869

JO - Multimedia systems

JF - Multimedia systems

SN - 0942-4962

IS - 2

ER -