Multimodal imaging unveils the hidden dimensions of plant physiology: from metabolic landscapes to mechanistic insights

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • André Gündel

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades14 Dez. 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

Bilder sagen mehr als tausend Worte. Die Einführung von Mikroskopen in der Geschichte der Naturwissenschaften eröffnete Einblicke in neue Dimensionen. Modernere bildgebende Verfahren wie Infrarot (IR) und Kernspinresonanz (NMR) ermöglichen es uns, die Grenzen des Sichtbaren noch weiter zu verschieben. Zusätzlich erweitern Computertools die Analyse komplexer Bilddaten. In dieser Dissertation beschreibe ich meine Arbeit an dekonvolutionellem Data Mining in Kapitel 2.1, um die Bildgebung mehrerer Metabolite mit einer einzigen Plattform, der Infrarotbildgebung, zu ermöglichen. Diese Strategie ermöglicht es, die Assimilatverteilung wichtiger Transport- und Speicherverbindungen zu verstehen und bietet einen Fahrplan für die quantitative Analyse solcher IR-Bilder. Das Zusammenspiel von Physik und Chemie insbesondere in biologischen Systemen stellt eine besondere Herausforderung dar, sowohl für die Erfassung als auch für die Interpretation resultierender Daten. Pflanzen sind komplexer als man denkt. Sie bestehen aus einem Mosaik an Geweben und jedes leistet seinen spezifischen Beitrag zur Gesamtfunktion der Pflanze. Gewebe beherbergen verschiedene Zelltypen und erfüllen unterschiedlichste Funktionen, egal ob tot oder lebendig. Imaging ist unverzichtbar, um die Verteilungsvielfalt von Stoffen innerhalb dieser aufzuklären. Durch destruktive Beprobung, die oft sensitivere und selektivere Analytnachweise erlaubt, gehen häufig topografische Beziehungen verloren. Kapitel 2.2 zeigt, wie solche Daten wieder in einen topografischen Kontext gesetzt werden können. Diese Fallstudie zeigt, wie Exsudate mithilfe eines multimodalen Ansatzes aus Massenspektroskopie und IR-Bildgebung zu ihren ursprünglichen Geweberegionen zurückverfolgt werden können, um Einblicke in ihre Funktionen zu erhalten. Die computergestützte Modellierung der Pflanzenphysiologie kann Einblicke in die Chemie der Zellwände liefern und Schlussfolgerungen hinsichtlich der mechanischen Stabilität der Internodien in Gräsern gegen externe mechanische Einflüsse erbringen (Kapitel 2.3). Durch die Integration eines mechanischen Modells der Gefäßstruktur mit ihrer Chemie beleuchtet diese Arbeit die Komplexität des Aufbaus struktureller Ressourcen und verknüpft ihre genetische Regulierung durch KASP-Marker mit nachvollziehbaren spektralen Eigenschaften und physikalischen Reaktionen. Letztendlich wollen wir wissen, wie Assimilate dorthin gelangen, wo sie hinsollen. Der letzte Abschnitt des Assimilat Weges wird durch das maternal-filiale Übergangsgewebe zwischen Phloem und Endosperm geregelt. Seine Rolle in der Metabolitübertragung wird hier anhand zweier wichtiger Aspekte beleuchtet. Erstens geht es um die Doppelrolle des wichtigen Saccharosetransporters SWEET11b bei der Zuteilung von Zuckern und Zytokinin in Gerstenkörnern (Kapitel 2.4). Die chemische Bildgebung machte einen Gradienten in der Zytokininverteilung sichtbar und bewies dessen topografischen Zusammenhang mit Saccharosetransport während der Samenfüllung. Zweitens sind der programmierte Zelltod und vakuoläre Verarbeitungsenzyme (VPE2) an der Assimilatfreisetzung aus der nuzellaren Projektion in das flüssige Endosperm beteiligt (Kapitel 2.5). Eine detaillierte Analyse von Mutanten und Transgenen hilft dabei, regulatorische Mechanismen zu identifizieren. Diese Studien zeigen die Leistungsfähigkeit fortschrittlicher Bildgebungsverfahren, die Geheimnisse der Pflanzenentwicklung zu entschlüsseln (Kapitel 2.6). Es zeigt sich das Veränderungen im Samen weitreichende Folgen in der gesamten Pflanze nach sich ziehen (Kapitel 3.1). Diese Entdeckung unterstreicht die Notwendigkeit, lokale Veränderungen im globalen Rahmen der internen Pflanzenfunktion zu untersuchen. Solche Strategien werden es uns ermöglichen, regulatorische Reaktionen an unvorhergesehenen Orten zu identifizieren und unser Verständnis der beteiligten Mechanismen zu verbessern, die das Sink-Source-Zusammenspiel steuern.

Zitieren

Multimodal imaging unveils the hidden dimensions of plant physiology: from metabolic landscapes to mechanistic insights. / Gündel, André.
Hannover, 2023. 241 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Gündel, A 2023, 'Multimodal imaging unveils the hidden dimensions of plant physiology: from metabolic landscapes to mechanistic insights', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/15807
Download
@phdthesis{7256549ec7f44b2586e1a13377f16fc4,
title = "Multimodal imaging unveils the hidden dimensions of plant physiology: from metabolic landscapes to mechanistic insights",
abstract = "Images are worth a thousand words. The microscope marked a revolutionary moment in the history of natural sciences, and contemporary technologies like infrared (IR) and nuclear magnetic resonance (NMR) now enable us to explore the previously invisible in images. Computational tools allow in-depth analysis of intricate image data. The combined use of techniques such as IR and NMR Imaging, alongside molecular and metabolic tools, provides a powerful approach to understanding plant physiology (Chapter 2.6). I want to show you a comprehensive journey through the process of image acquisition and analysis. By describing deconvolutional data mining, I can show you how to enable imaging of multiple metabolites using a single infrared platform (Chapter 2.1). This strategy allows us to understand the assimilate allocation of major transport and storage compounds and offers a road map to analyse such IR images quantitatively. The complex interplay between physics and chemistry, especially in biological systems, presents a challenge for acquiring and interpreting the resulting data. Plants present a remarkable complexity, featuring a mosaic of diverse tissues and cells, each with their unique roles contributing to the overall functioning of the plant. Even seemingly inert cell tissues serve vital purposes. Imaging techniques are indispensable for unravelling the spatial variations within plants. Often, we lose topographical relations due to destructive sampling. Abstract chemical clusters can be defined by more sensitive non-topographic analytics and imaged even if single analytes tend to fall below their detection limit. Chapter 2.2 provides an insight into how exudate composition can be traced back to their original source tissues by a multimodal approach of mass spectrometry and IR imaging to provide a better context of composition and function. Computational modelling of plant physiology can provide insights into the chemistry of cell walls and derive conclusions with respect to the mechanical stability of the internodes in grasses against lodging. By integrating a mechanical model of the vascular structure with its chemistry, this work sheds light on the complexity of structural resource buildup and links its genetic regulation through KASP markers to traceable spectral characteristics and physical response (Chapter 2.3). Finally, we want to know how assimilates get where they are supposed to be. The terminal part of the assimilate allocation pathway is controlled by the post-phloem maternal filial transition tissues. Its functional role in metabolite delivery from maternal to filial organs is vital for developing seeds. This work focuses on two crucial aspects that require particular attention. First is the dual role of an important sucrose transporter SWEET11b in the allocation of sugars and cytokinin in barley grain (Chapter 2.4). Chemical imaging visualised a gradient in cytokinin distribution and evidenced its topographical link to sucrose gradients during grain filling. Second is the involvement of programmed cell death and vacuolar processing enzymes (VPE2) in assimilate release from the nucellar projection into the endosperm cavity (Chapter 2.5). Detailed analysis of mutants and transgenics helps to generate mechanistic views of the complex story. All of these studies highlight the power of advanced imaging technologies to unlock the secrets of plant development (Chapter 2.6). The whole plant will be affected in its distribution of sugars, as exemplified by the manipulation of maternal-filial interactions in seeds (Chapter 3.1). This discovery highlights the need to study local changes within a global framework of internal plant function. Such a strategy will enable us to identify regulatory responses in unforeseen locations and enhance our comprehension of the mechanisms that govern the sink-source relationships.",
author = "Andr{\'e} G{\"u}ndel",
year = "2023",
doi = "10.15488/15807",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Multimodal imaging unveils the hidden dimensions of plant physiology

T2 - from metabolic landscapes to mechanistic insights

AU - Gündel, André

PY - 2023

Y1 - 2023

N2 - Images are worth a thousand words. The microscope marked a revolutionary moment in the history of natural sciences, and contemporary technologies like infrared (IR) and nuclear magnetic resonance (NMR) now enable us to explore the previously invisible in images. Computational tools allow in-depth analysis of intricate image data. The combined use of techniques such as IR and NMR Imaging, alongside molecular and metabolic tools, provides a powerful approach to understanding plant physiology (Chapter 2.6). I want to show you a comprehensive journey through the process of image acquisition and analysis. By describing deconvolutional data mining, I can show you how to enable imaging of multiple metabolites using a single infrared platform (Chapter 2.1). This strategy allows us to understand the assimilate allocation of major transport and storage compounds and offers a road map to analyse such IR images quantitatively. The complex interplay between physics and chemistry, especially in biological systems, presents a challenge for acquiring and interpreting the resulting data. Plants present a remarkable complexity, featuring a mosaic of diverse tissues and cells, each with their unique roles contributing to the overall functioning of the plant. Even seemingly inert cell tissues serve vital purposes. Imaging techniques are indispensable for unravelling the spatial variations within plants. Often, we lose topographical relations due to destructive sampling. Abstract chemical clusters can be defined by more sensitive non-topographic analytics and imaged even if single analytes tend to fall below their detection limit. Chapter 2.2 provides an insight into how exudate composition can be traced back to their original source tissues by a multimodal approach of mass spectrometry and IR imaging to provide a better context of composition and function. Computational modelling of plant physiology can provide insights into the chemistry of cell walls and derive conclusions with respect to the mechanical stability of the internodes in grasses against lodging. By integrating a mechanical model of the vascular structure with its chemistry, this work sheds light on the complexity of structural resource buildup and links its genetic regulation through KASP markers to traceable spectral characteristics and physical response (Chapter 2.3). Finally, we want to know how assimilates get where they are supposed to be. The terminal part of the assimilate allocation pathway is controlled by the post-phloem maternal filial transition tissues. Its functional role in metabolite delivery from maternal to filial organs is vital for developing seeds. This work focuses on two crucial aspects that require particular attention. First is the dual role of an important sucrose transporter SWEET11b in the allocation of sugars and cytokinin in barley grain (Chapter 2.4). Chemical imaging visualised a gradient in cytokinin distribution and evidenced its topographical link to sucrose gradients during grain filling. Second is the involvement of programmed cell death and vacuolar processing enzymes (VPE2) in assimilate release from the nucellar projection into the endosperm cavity (Chapter 2.5). Detailed analysis of mutants and transgenics helps to generate mechanistic views of the complex story. All of these studies highlight the power of advanced imaging technologies to unlock the secrets of plant development (Chapter 2.6). The whole plant will be affected in its distribution of sugars, as exemplified by the manipulation of maternal-filial interactions in seeds (Chapter 3.1). This discovery highlights the need to study local changes within a global framework of internal plant function. Such a strategy will enable us to identify regulatory responses in unforeseen locations and enhance our comprehension of the mechanisms that govern the sink-source relationships.

AB - Images are worth a thousand words. The microscope marked a revolutionary moment in the history of natural sciences, and contemporary technologies like infrared (IR) and nuclear magnetic resonance (NMR) now enable us to explore the previously invisible in images. Computational tools allow in-depth analysis of intricate image data. The combined use of techniques such as IR and NMR Imaging, alongside molecular and metabolic tools, provides a powerful approach to understanding plant physiology (Chapter 2.6). I want to show you a comprehensive journey through the process of image acquisition and analysis. By describing deconvolutional data mining, I can show you how to enable imaging of multiple metabolites using a single infrared platform (Chapter 2.1). This strategy allows us to understand the assimilate allocation of major transport and storage compounds and offers a road map to analyse such IR images quantitatively. The complex interplay between physics and chemistry, especially in biological systems, presents a challenge for acquiring and interpreting the resulting data. Plants present a remarkable complexity, featuring a mosaic of diverse tissues and cells, each with their unique roles contributing to the overall functioning of the plant. Even seemingly inert cell tissues serve vital purposes. Imaging techniques are indispensable for unravelling the spatial variations within plants. Often, we lose topographical relations due to destructive sampling. Abstract chemical clusters can be defined by more sensitive non-topographic analytics and imaged even if single analytes tend to fall below their detection limit. Chapter 2.2 provides an insight into how exudate composition can be traced back to their original source tissues by a multimodal approach of mass spectrometry and IR imaging to provide a better context of composition and function. Computational modelling of plant physiology can provide insights into the chemistry of cell walls and derive conclusions with respect to the mechanical stability of the internodes in grasses against lodging. By integrating a mechanical model of the vascular structure with its chemistry, this work sheds light on the complexity of structural resource buildup and links its genetic regulation through KASP markers to traceable spectral characteristics and physical response (Chapter 2.3). Finally, we want to know how assimilates get where they are supposed to be. The terminal part of the assimilate allocation pathway is controlled by the post-phloem maternal filial transition tissues. Its functional role in metabolite delivery from maternal to filial organs is vital for developing seeds. This work focuses on two crucial aspects that require particular attention. First is the dual role of an important sucrose transporter SWEET11b in the allocation of sugars and cytokinin in barley grain (Chapter 2.4). Chemical imaging visualised a gradient in cytokinin distribution and evidenced its topographical link to sucrose gradients during grain filling. Second is the involvement of programmed cell death and vacuolar processing enzymes (VPE2) in assimilate release from the nucellar projection into the endosperm cavity (Chapter 2.5). Detailed analysis of mutants and transgenics helps to generate mechanistic views of the complex story. All of these studies highlight the power of advanced imaging technologies to unlock the secrets of plant development (Chapter 2.6). The whole plant will be affected in its distribution of sugars, as exemplified by the manipulation of maternal-filial interactions in seeds (Chapter 3.1). This discovery highlights the need to study local changes within a global framework of internal plant function. Such a strategy will enable us to identify regulatory responses in unforeseen locations and enhance our comprehension of the mechanisms that govern the sink-source relationships.

U2 - 10.15488/15807

DO - 10.15488/15807

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren