Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 577-593 |
Seitenumfang | 17 |
Fachzeitschrift | Mathematical Methods in the Applied Sciences |
Jahrgang | 32 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 20 Aug. 2008 |
Abstract
We consider here an n-dimcnsional periodic flow describing the motion of an incompressible Stokesian fluid in a Hele-Shaw cell. The free surface separating the fluid from air, at pressure normalized to be zero, is moving under the influence of gravity and surface tension. We prove the existence of a unique classical Hölder solution for small perturbations of cylinders. Moreover, we evidence the existence of a single steady state and prove its exponential stability.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematical Methods in the Applied Sciences, Jahrgang 32, Nr. 5, 20.08.2008, S. 577-593.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Multidimensional Hele-Shaw flows modelling Stokesian fluids
AU - Escher, Joachim
AU - Matioc, Bogdan-Vasile
PY - 2008/8/20
Y1 - 2008/8/20
N2 - We consider here an n-dimcnsional periodic flow describing the motion of an incompressible Stokesian fluid in a Hele-Shaw cell. The free surface separating the fluid from air, at pressure normalized to be zero, is moving under the influence of gravity and surface tension. We prove the existence of a unique classical Hölder solution for small perturbations of cylinders. Moreover, we evidence the existence of a single steady state and prove its exponential stability.
AB - We consider here an n-dimcnsional periodic flow describing the motion of an incompressible Stokesian fluid in a Hele-Shaw cell. The free surface separating the fluid from air, at pressure normalized to be zero, is moving under the influence of gravity and surface tension. We prove the existence of a unique classical Hölder solution for small perturbations of cylinders. Moreover, we evidence the existence of a single steady state and prove its exponential stability.
KW - Hele-Shaw flow
KW - Mean curvature
KW - Non-Newtonian fluid
KW - Nonlinear parabolic equation
KW - Surface tension
UR - http://www.scopus.com/inward/record.url?scp=63449097201&partnerID=8YFLogxK
U2 - 10.1002/mma.1053
DO - 10.1002/mma.1053
M3 - Article
AN - SCOPUS:63449097201
VL - 32
SP - 577
EP - 593
JO - Mathematical Methods in the Applied Sciences
JF - Mathematical Methods in the Applied Sciences
SN - 0170-4214
IS - 5
ER -