Multidimensional Hele-Shaw flows modelling Stokesian fluids

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)577-593
Seitenumfang17
FachzeitschriftMathematical Methods in the Applied Sciences
Jahrgang32
Ausgabenummer5
PublikationsstatusVeröffentlicht - 20 Aug. 2008

Abstract

We consider here an n-dimcnsional periodic flow describing the motion of an incompressible Stokesian fluid in a Hele-Shaw cell. The free surface separating the fluid from air, at pressure normalized to be zero, is moving under the influence of gravity and surface tension. We prove the existence of a unique classical Hölder solution for small perturbations of cylinders. Moreover, we evidence the existence of a single steady state and prove its exponential stability.

ASJC Scopus Sachgebiete

Zitieren

Multidimensional Hele-Shaw flows modelling Stokesian fluids. / Escher, Joachim; Matioc, Bogdan-Vasile.
in: Mathematical Methods in the Applied Sciences, Jahrgang 32, Nr. 5, 20.08.2008, S. 577-593.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{62310f8b5e9943329c7f226a28654302,
title = "Multidimensional Hele-Shaw flows modelling Stokesian fluids",
abstract = "We consider here an n-dimcnsional periodic flow describing the motion of an incompressible Stokesian fluid in a Hele-Shaw cell. The free surface separating the fluid from air, at pressure normalized to be zero, is moving under the influence of gravity and surface tension. We prove the existence of a unique classical H{\"o}lder solution for small perturbations of cylinders. Moreover, we evidence the existence of a single steady state and prove its exponential stability.",
keywords = "Hele-Shaw flow, Mean curvature, Non-Newtonian fluid, Nonlinear parabolic equation, Surface tension",
author = "Joachim Escher and Bogdan-Vasile Matioc",
year = "2008",
month = aug,
day = "20",
doi = "10.1002/mma.1053",
language = "English",
volume = "32",
pages = "577--593",
journal = "Mathematical Methods in the Applied Sciences",
issn = "0170-4214",
publisher = "John Wiley and Sons Ltd",
number = "5",

}

Download

TY - JOUR

T1 - Multidimensional Hele-Shaw flows modelling Stokesian fluids

AU - Escher, Joachim

AU - Matioc, Bogdan-Vasile

PY - 2008/8/20

Y1 - 2008/8/20

N2 - We consider here an n-dimcnsional periodic flow describing the motion of an incompressible Stokesian fluid in a Hele-Shaw cell. The free surface separating the fluid from air, at pressure normalized to be zero, is moving under the influence of gravity and surface tension. We prove the existence of a unique classical Hölder solution for small perturbations of cylinders. Moreover, we evidence the existence of a single steady state and prove its exponential stability.

AB - We consider here an n-dimcnsional periodic flow describing the motion of an incompressible Stokesian fluid in a Hele-Shaw cell. The free surface separating the fluid from air, at pressure normalized to be zero, is moving under the influence of gravity and surface tension. We prove the existence of a unique classical Hölder solution for small perturbations of cylinders. Moreover, we evidence the existence of a single steady state and prove its exponential stability.

KW - Hele-Shaw flow

KW - Mean curvature

KW - Non-Newtonian fluid

KW - Nonlinear parabolic equation

KW - Surface tension

UR - http://www.scopus.com/inward/record.url?scp=63449097201&partnerID=8YFLogxK

U2 - 10.1002/mma.1053

DO - 10.1002/mma.1053

M3 - Article

AN - SCOPUS:63449097201

VL - 32

SP - 577

EP - 593

JO - Mathematical Methods in the Applied Sciences

JF - Mathematical Methods in the Applied Sciences

SN - 0170-4214

IS - 5

ER -

Von denselben Autoren