Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 034003 |
Fachzeitschrift | Quantum Science and Technology |
Jahrgang | 6 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 7 Mai 2021 |
Abstract
We study heating of motional modes of a single ion and of extended ion crystals trapped in a linear radio frequency (rf) Paul trap with a precision of Δ ṅ ≈ 0.1 phonons s-1. Single-ion axial and radial heating rates are consistent and electric field noise has been stable over the course of four years. At a secular frequency of ω sec = 2π × 620 kHz, we measure ṅ = 0.56 (6) phonons s-1 per ion for the center-of-mass (com) mode of linear chains of up to 11 ions and observe no significant heating of the out-of-phase (oop) modes. By displacing the ions away from the nodal line, inducing excess micromotion, rf noise heats the com mode quadratically as a function of radial displacement r by phonons s-1 μm-2 per ion, while the oop modes are protected from rf-noise induced heating in linear chains. By changing the quality factor of the resonant rf circuit from Q = 542 to Q = 204, we observe an increase of rf noise by a factor of up to 3. We show that the rf-noise induced heating of motional modes of extended crystals also depends on the symmetry of the crystal and of the mode itself. As an example, we consider several 2D and 3D crystal configurations. Heating rates of up to 500 ph s-1 are observed for individual modes, giving rise to a total kinetic energy increase and thus a fractional time dilation shift of up to -0.3 × 10-18 s-1 of the total system. In addition, we detail how the excitation probability of the individual ions is reduced and decoherence is increased due to the Debye-Waller effect.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Werkstoffwissenschaften (insg.)
- Werkstoffwissenschaften (sonstige)
- Physik und Astronomie (insg.)
- Physik und Astronomie (sonstige)
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Quantum Science and Technology, Jahrgang 6, Nr. 3, 034003, 07.05.2021.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Motional heating of spatially extended ion crystals
AU - Kalincev, D.
AU - Dreissen, L. S.
AU - Kulosa, A. P.
AU - Yeh, C. H.
AU - Fürst, H. A.
AU - Mehlstäubler, Tanja E.
PY - 2021/5/7
Y1 - 2021/5/7
N2 - We study heating of motional modes of a single ion and of extended ion crystals trapped in a linear radio frequency (rf) Paul trap with a precision of Δ ṅ ≈ 0.1 phonons s-1. Single-ion axial and radial heating rates are consistent and electric field noise has been stable over the course of four years. At a secular frequency of ω sec = 2π × 620 kHz, we measure ṅ = 0.56 (6) phonons s-1 per ion for the center-of-mass (com) mode of linear chains of up to 11 ions and observe no significant heating of the out-of-phase (oop) modes. By displacing the ions away from the nodal line, inducing excess micromotion, rf noise heats the com mode quadratically as a function of radial displacement r by phonons s-1 μm-2 per ion, while the oop modes are protected from rf-noise induced heating in linear chains. By changing the quality factor of the resonant rf circuit from Q = 542 to Q = 204, we observe an increase of rf noise by a factor of up to 3. We show that the rf-noise induced heating of motional modes of extended crystals also depends on the symmetry of the crystal and of the mode itself. As an example, we consider several 2D and 3D crystal configurations. Heating rates of up to 500 ph s-1 are observed for individual modes, giving rise to a total kinetic energy increase and thus a fractional time dilation shift of up to -0.3 × 10-18 s-1 of the total system. In addition, we detail how the excitation probability of the individual ions is reduced and decoherence is increased due to the Debye-Waller effect.
AB - We study heating of motional modes of a single ion and of extended ion crystals trapped in a linear radio frequency (rf) Paul trap with a precision of Δ ṅ ≈ 0.1 phonons s-1. Single-ion axial and radial heating rates are consistent and electric field noise has been stable over the course of four years. At a secular frequency of ω sec = 2π × 620 kHz, we measure ṅ = 0.56 (6) phonons s-1 per ion for the center-of-mass (com) mode of linear chains of up to 11 ions and observe no significant heating of the out-of-phase (oop) modes. By displacing the ions away from the nodal line, inducing excess micromotion, rf noise heats the com mode quadratically as a function of radial displacement r by phonons s-1 μm-2 per ion, while the oop modes are protected from rf-noise induced heating in linear chains. By changing the quality factor of the resonant rf circuit from Q = 542 to Q = 204, we observe an increase of rf noise by a factor of up to 3. We show that the rf-noise induced heating of motional modes of extended crystals also depends on the symmetry of the crystal and of the mode itself. As an example, we consider several 2D and 3D crystal configurations. Heating rates of up to 500 ph s-1 are observed for individual modes, giving rise to a total kinetic energy increase and thus a fractional time dilation shift of up to -0.3 × 10-18 s-1 of the total system. In addition, we detail how the excitation probability of the individual ions is reduced and decoherence is increased due to the Debye-Waller effect.
KW - ion Coulomb crystals
KW - multi-ion clocks
KW - precision metrology
KW - radio frequency noise
KW - vibrational mode heating
UR - http://www.scopus.com/inward/record.url?scp=85106368049&partnerID=8YFLogxK
U2 - 10.1088/2058-9565/abee99
DO - 10.1088/2058-9565/abee99
M3 - Article
AN - SCOPUS:85106368049
VL - 6
JO - Quantum Science and Technology
JF - Quantum Science and Technology
IS - 3
M1 - 034003
ER -