Loading [MathJax]/extensions/tex2jax.js

Mostly Harmless Methods for QSP-Processing with Laurent Polynomials

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autorschaft

Organisationseinheiten

Details

OriginalspracheEnglisch
Titel des Sammelwerks2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
Herausgeber/-innenCandace Culhane, Greg T. Byrd, Hausi Muller, Yuri Alexeev, Yuri Alexeev, Sarah Sheldon
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten150-160
Seitenumfang11
ISBN (elektronisch)979-8-3315-4137-8
ISBN (Print)979-8-3315-4138-5
PublikationsstatusVeröffentlicht - 15 Sept. 2024
Veranstaltung5th IEEE International Conference on Quantum Computing and Engineering, QCE 2024 - Montreal, Kanada
Dauer: 15 Sept. 202420 Sept. 2024

Abstract

Quantum signal processing (QSP) and its extensions are increasingly popular frameworks for developing quantum algorithms. Yet QSP implementations still struggle to complete a classical pre-processing step ('QSP-processing') that determines the set of SU (2) rotation matrices defining the QSP circuit. We introduce a method of QSP-processing for complex polynomials that identifies a solution without optimization or root-finding and verify the success of our methods with polynomials characterized by floating point precision coefficients. We demonstrate the success of our technique for relevant target polynomials and precision regimes, including the Jacobi-Anger expansion used in QSP Hamiltonian Simulation. For popular choices of sign and inverse function approximations, we characterize regimes where all known QSP-processing methods should be expected to struggle without arbitrary precision arithmetic.

ASJC Scopus Sachgebiete

Zitieren

Mostly Harmless Methods for QSP-Processing with Laurent Polynomials. / Skelton, S. E.
2024 IEEE International Conference on Quantum Computing and Engineering (QCE). Hrsg. / Candace Culhane; Greg T. Byrd; Hausi Muller; Yuri Alexeev; Yuri Alexeev; Sarah Sheldon. Institute of Electrical and Electronics Engineers Inc., 2024. S. 150-160.

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Skelton, SE 2024, Mostly Harmless Methods for QSP-Processing with Laurent Polynomials. in C Culhane, GT Byrd, H Muller, Y Alexeev, Y Alexeev & S Sheldon (Hrsg.), 2024 IEEE International Conference on Quantum Computing and Engineering (QCE). Institute of Electrical and Electronics Engineers Inc., S. 150-160, 5th IEEE International Conference on Quantum Computing and Engineering, QCE 2024, Montreal, Kanada, 15 Sept. 2024. https://doi.org/10.1109/QCE60285.2024.00027, https://doi.org/10.48550/arXiv.2408.04321
Skelton, S. E. (2024). Mostly Harmless Methods for QSP-Processing with Laurent Polynomials. In C. Culhane, G. T. Byrd, H. Muller, Y. Alexeev, Y. Alexeev, & S. Sheldon (Hrsg.), 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) (S. 150-160). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/QCE60285.2024.00027, https://doi.org/10.48550/arXiv.2408.04321
Skelton SE. Mostly Harmless Methods for QSP-Processing with Laurent Polynomials. in Culhane C, Byrd GT, Muller H, Alexeev Y, Alexeev Y, Sheldon S, Hrsg., 2024 IEEE International Conference on Quantum Computing and Engineering (QCE). Institute of Electrical and Electronics Engineers Inc. 2024. S. 150-160 doi: 10.1109/QCE60285.2024.00027, 10.48550/arXiv.2408.04321
Skelton, S. E. / Mostly Harmless Methods for QSP-Processing with Laurent Polynomials. 2024 IEEE International Conference on Quantum Computing and Engineering (QCE). Hrsg. / Candace Culhane ; Greg T. Byrd ; Hausi Muller ; Yuri Alexeev ; Yuri Alexeev ; Sarah Sheldon. Institute of Electrical and Electronics Engineers Inc., 2024. S. 150-160
Download
@inproceedings{14dfc695d15d453f8fd2005db7dab471,
title = "Mostly Harmless Methods for QSP-Processing with Laurent Polynomials",
abstract = "Quantum signal processing (QSP) and its extensions are increasingly popular frameworks for developing quantum algorithms. Yet QSP implementations still struggle to complete a classical pre-processing step ('QSP-processing') that determines the set of SU (2) rotation matrices defining the QSP circuit. We introduce a method of QSP-processing for complex polynomials that identifies a solution without optimization or root-finding and verify the success of our methods with polynomials characterized by floating point precision coefficients. We demonstrate the success of our technique for relevant target polynomials and precision regimes, including the Jacobi-Anger expansion used in QSP Hamiltonian Simulation. For popular choices of sign and inverse function approximations, we characterize regimes where all known QSP-processing methods should be expected to struggle without arbitrary precision arithmetic.",
keywords = "laurent polynomials, quantum signal processing, quantum singular value transformations",
author = "Skelton, {S. E.}",
note = "Publisher Copyright: {\textcopyright} 2024 IEEE.; 5th IEEE International Conference on Quantum Computing and Engineering, QCE 2024 ; Conference date: 15-09-2024 Through 20-09-2024",
year = "2024",
month = sep,
day = "15",
doi = "10.1109/QCE60285.2024.00027",
language = "English",
isbn = "979-8-3315-4138-5",
pages = "150--160",
editor = "Candace Culhane and Byrd, {Greg T.} and Hausi Muller and Yuri Alexeev and Yuri Alexeev and Sarah Sheldon",
booktitle = "2024 IEEE International Conference on Quantum Computing and Engineering (QCE)",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
address = "United States",

}

Download

TY - GEN

T1 - Mostly Harmless Methods for QSP-Processing with Laurent Polynomials

AU - Skelton, S. E.

N1 - Publisher Copyright: © 2024 IEEE.

PY - 2024/9/15

Y1 - 2024/9/15

N2 - Quantum signal processing (QSP) and its extensions are increasingly popular frameworks for developing quantum algorithms. Yet QSP implementations still struggle to complete a classical pre-processing step ('QSP-processing') that determines the set of SU (2) rotation matrices defining the QSP circuit. We introduce a method of QSP-processing for complex polynomials that identifies a solution without optimization or root-finding and verify the success of our methods with polynomials characterized by floating point precision coefficients. We demonstrate the success of our technique for relevant target polynomials and precision regimes, including the Jacobi-Anger expansion used in QSP Hamiltonian Simulation. For popular choices of sign and inverse function approximations, we characterize regimes where all known QSP-processing methods should be expected to struggle without arbitrary precision arithmetic.

AB - Quantum signal processing (QSP) and its extensions are increasingly popular frameworks for developing quantum algorithms. Yet QSP implementations still struggle to complete a classical pre-processing step ('QSP-processing') that determines the set of SU (2) rotation matrices defining the QSP circuit. We introduce a method of QSP-processing for complex polynomials that identifies a solution without optimization or root-finding and verify the success of our methods with polynomials characterized by floating point precision coefficients. We demonstrate the success of our technique for relevant target polynomials and precision regimes, including the Jacobi-Anger expansion used in QSP Hamiltonian Simulation. For popular choices of sign and inverse function approximations, we characterize regimes where all known QSP-processing methods should be expected to struggle without arbitrary precision arithmetic.

KW - laurent polynomials

KW - quantum signal processing

KW - quantum singular value transformations

UR - http://www.scopus.com/inward/record.url?scp=85217419652&partnerID=8YFLogxK

U2 - 10.1109/QCE60285.2024.00027

DO - 10.1109/QCE60285.2024.00027

M3 - Conference contribution

AN - SCOPUS:85217419652

SN - 979-8-3315-4138-5

SP - 150

EP - 160

BT - 2024 IEEE International Conference on Quantum Computing and Engineering (QCE)

A2 - Culhane, Candace

A2 - Byrd, Greg T.

A2 - Muller, Hausi

A2 - Alexeev, Yuri

A2 - Alexeev, Yuri

A2 - Sheldon, Sarah

PB - Institute of Electrical and Electronics Engineers Inc.

T2 - 5th IEEE International Conference on Quantum Computing and Engineering, QCE 2024

Y2 - 15 September 2024 through 20 September 2024

ER -