Moduli-space dynamics of noncommutative abelian sigma-model solitons

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer028
FachzeitschriftJournal of high energy physics
Jahrgang2006
Ausgabenummer6
PublikationsstatusVeröffentlicht - 1 Juli 2006

Abstract

In the noncommutative (Moyal) plane, we relate exact U(1) sigma-model solitons to generic scalar-field solitons for an infinitely stiff potential. The static k-lump moduli space k/Sk features a natural Kähler metric induced from an embedding Grassmannian. The moduli-space dynamics is blind against adding a WZW-like term to the sigma-model action and thus also applies to the integrable U(1) Ward model. For the latter's two-soliton motion we compare the exact field configurations with their supposed moduli-space approximations. Surprisingly, the two do not match, which questions the adiabatic method for noncommutative solitons.

ASJC Scopus Sachgebiete

Zitieren

Moduli-space dynamics of noncommutative abelian sigma-model solitons. / Klawunn, Michael; Lechtenfeld, Olaf; Petersen, Stefan.
in: Journal of high energy physics, Jahrgang 2006, Nr. 6, 028, 01.07.2006.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Klawunn M, Lechtenfeld O, Petersen S. Moduli-space dynamics of noncommutative abelian sigma-model solitons. Journal of high energy physics. 2006 Jul 1;2006(6):028. doi: 10.1088/1126-6708/2006/06/028
Download
@article{9d416347d764458c8662772d8269f275,
title = "Moduli-space dynamics of noncommutative abelian sigma-model solitons",
abstract = "In the noncommutative (Moyal) plane, we relate exact U(1) sigma-model solitons to generic scalar-field solitons for an infinitely stiff potential. The static k-lump moduli space k/Sk features a natural K{\"a}hler metric induced from an embedding Grassmannian. The moduli-space dynamics is blind against adding a WZW-like term to the sigma-model action and thus also applies to the integrable U(1) Ward model. For the latter's two-soliton motion we compare the exact field configurations with their supposed moduli-space approximations. Surprisingly, the two do not match, which questions the adiabatic method for noncommutative solitons.",
keywords = "Integrable Field Theories, Non-Commutative Geometry, Solitons Monopoles and Instantons",
author = "Michael Klawunn and Olaf Lechtenfeld and Stefan Petersen",
note = "Copyright: Copyright 2006 Elsevier B.V., All rights reserved.",
year = "2006",
month = jul,
day = "1",
doi = "10.1088/1126-6708/2006/06/028",
language = "English",
volume = "2006",
journal = "Journal of high energy physics",
issn = "1029-8479",
publisher = "Springer Verlag",
number = "6",

}

Download

TY - JOUR

T1 - Moduli-space dynamics of noncommutative abelian sigma-model solitons

AU - Klawunn, Michael

AU - Lechtenfeld, Olaf

AU - Petersen, Stefan

N1 - Copyright: Copyright 2006 Elsevier B.V., All rights reserved.

PY - 2006/7/1

Y1 - 2006/7/1

N2 - In the noncommutative (Moyal) plane, we relate exact U(1) sigma-model solitons to generic scalar-field solitons for an infinitely stiff potential. The static k-lump moduli space k/Sk features a natural Kähler metric induced from an embedding Grassmannian. The moduli-space dynamics is blind against adding a WZW-like term to the sigma-model action and thus also applies to the integrable U(1) Ward model. For the latter's two-soliton motion we compare the exact field configurations with their supposed moduli-space approximations. Surprisingly, the two do not match, which questions the adiabatic method for noncommutative solitons.

AB - In the noncommutative (Moyal) plane, we relate exact U(1) sigma-model solitons to generic scalar-field solitons for an infinitely stiff potential. The static k-lump moduli space k/Sk features a natural Kähler metric induced from an embedding Grassmannian. The moduli-space dynamics is blind against adding a WZW-like term to the sigma-model action and thus also applies to the integrable U(1) Ward model. For the latter's two-soliton motion we compare the exact field configurations with their supposed moduli-space approximations. Surprisingly, the two do not match, which questions the adiabatic method for noncommutative solitons.

KW - Integrable Field Theories

KW - Non-Commutative Geometry

KW - Solitons Monopoles and Instantons

UR - http://www.scopus.com/inward/record.url?scp=33745751241&partnerID=8YFLogxK

U2 - 10.1088/1126-6708/2006/06/028

DO - 10.1088/1126-6708/2006/06/028

M3 - Article

AN - SCOPUS:33745751241

VL - 2006

JO - Journal of high energy physics

JF - Journal of high energy physics

SN - 1029-8479

IS - 6

M1 - 028

ER -

Von denselben Autoren