Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 028 |
Fachzeitschrift | Journal of high energy physics |
Jahrgang | 2006 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - 1 Juli 2006 |
Abstract
In the noncommutative (Moyal) plane, we relate exact U(1) sigma-model solitons to generic scalar-field solitons for an infinitely stiff potential. The static k-lump moduli space k/Sk features a natural Kähler metric induced from an embedding Grassmannian. The moduli-space dynamics is blind against adding a WZW-like term to the sigma-model action and thus also applies to the integrable U(1) Ward model. For the latter's two-soliton motion we compare the exact field configurations with their supposed moduli-space approximations. Surprisingly, the two do not match, which questions the adiabatic method for noncommutative solitons.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Kern- und Hochenergiephysik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of high energy physics, Jahrgang 2006, Nr. 6, 028, 01.07.2006.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Moduli-space dynamics of noncommutative abelian sigma-model solitons
AU - Klawunn, Michael
AU - Lechtenfeld, Olaf
AU - Petersen, Stefan
N1 - Copyright: Copyright 2006 Elsevier B.V., All rights reserved.
PY - 2006/7/1
Y1 - 2006/7/1
N2 - In the noncommutative (Moyal) plane, we relate exact U(1) sigma-model solitons to generic scalar-field solitons for an infinitely stiff potential. The static k-lump moduli space k/Sk features a natural Kähler metric induced from an embedding Grassmannian. The moduli-space dynamics is blind against adding a WZW-like term to the sigma-model action and thus also applies to the integrable U(1) Ward model. For the latter's two-soliton motion we compare the exact field configurations with their supposed moduli-space approximations. Surprisingly, the two do not match, which questions the adiabatic method for noncommutative solitons.
AB - In the noncommutative (Moyal) plane, we relate exact U(1) sigma-model solitons to generic scalar-field solitons for an infinitely stiff potential. The static k-lump moduli space k/Sk features a natural Kähler metric induced from an embedding Grassmannian. The moduli-space dynamics is blind against adding a WZW-like term to the sigma-model action and thus also applies to the integrable U(1) Ward model. For the latter's two-soliton motion we compare the exact field configurations with their supposed moduli-space approximations. Surprisingly, the two do not match, which questions the adiabatic method for noncommutative solitons.
KW - Integrable Field Theories
KW - Non-Commutative Geometry
KW - Solitons Monopoles and Instantons
UR - http://www.scopus.com/inward/record.url?scp=33745751241&partnerID=8YFLogxK
U2 - 10.1088/1126-6708/2006/06/028
DO - 10.1088/1126-6708/2006/06/028
M3 - Article
AN - SCOPUS:33745751241
VL - 2006
JO - Journal of high energy physics
JF - Journal of high energy physics
SN - 1029-8479
IS - 6
M1 - 028
ER -