Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 329-366 |
Seitenumfang | 38 |
Fachzeitschrift | Journal of the Mathematical Society of Japan |
Jahrgang | 75 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Jan. 2023 |
Abstract
We give a complete classification of complex Q-homology projective planes with numerically trivial canonical bundle. There are 31 types, and each has one-dimensional moduli. In fact, all moduli curves are rational and defined over Q, and we determine all families explicitly using extremal rational elliptic surfaces and Enriques involutions of base change type.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of the Mathematical Society of Japan, Jahrgang 75, Nr. 1, 01.2023, S. 329-366.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Moduli of Gorenstein Q-homology projective planes
AU - Schütt, Matthias
PY - 2023/1
Y1 - 2023/1
N2 - We give a complete classification of complex Q-homology projective planes with numerically trivial canonical bundle. There are 31 types, and each has one-dimensional moduli. In fact, all moduli curves are rational and defined over Q, and we determine all families explicitly using extremal rational elliptic surfaces and Enriques involutions of base change type.
AB - We give a complete classification of complex Q-homology projective planes with numerically trivial canonical bundle. There are 31 types, and each has one-dimensional moduli. In fact, all moduli curves are rational and defined over Q, and we determine all families explicitly using extremal rational elliptic surfaces and Enriques involutions of base change type.
KW - Enriques surface
KW - root lattice
KW - smooth rational curve
UR - http://www.scopus.com/inward/record.url?scp=85161682772&partnerID=8YFLogxK
U2 - 10.2969/jmsj/87028702
DO - 10.2969/jmsj/87028702
M3 - Article
AN - SCOPUS:85161682772
VL - 75
SP - 329
EP - 366
JO - Journal of the Mathematical Society of Japan
JF - Journal of the Mathematical Society of Japan
SN - 0025-5645
IS - 1
ER -