Moduli of Gorenstein Q-homology projective planes

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)329-366
Seitenumfang38
FachzeitschriftJournal of the Mathematical Society of Japan
Jahrgang75
Ausgabenummer1
PublikationsstatusVeröffentlicht - Jan. 2023

Abstract

We give a complete classification of complex Q-homology projective planes with numerically trivial canonical bundle. There are 31 types, and each has one-dimensional moduli. In fact, all moduli curves are rational and defined over Q, and we determine all families explicitly using extremal rational elliptic surfaces and Enriques involutions of base change type.

ASJC Scopus Sachgebiete

Zitieren

Moduli of Gorenstein Q-homology projective planes. / Schütt, Matthias.
in: Journal of the Mathematical Society of Japan, Jahrgang 75, Nr. 1, 01.2023, S. 329-366.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{11e0db9a6bce4fbba6f5d83b9c1debac,
title = "Moduli of Gorenstein Q-homology projective planes",
abstract = "We give a complete classification of complex Q-homology projective planes with numerically trivial canonical bundle. There are 31 types, and each has one-dimensional moduli. In fact, all moduli curves are rational and defined over Q, and we determine all families explicitly using extremal rational elliptic surfaces and Enriques involutions of base change type.",
keywords = "Enriques surface, root lattice, smooth rational curve",
author = "Matthias Sch{\"u}tt",
year = "2023",
month = jan,
doi = "10.2969/jmsj/87028702",
language = "English",
volume = "75",
pages = "329--366",
journal = "Journal of the Mathematical Society of Japan",
issn = "0025-5645",
publisher = "Mathematical Society of Japan - Kobe University",
number = "1",

}

Download

TY - JOUR

T1 - Moduli of Gorenstein Q-homology projective planes

AU - Schütt, Matthias

PY - 2023/1

Y1 - 2023/1

N2 - We give a complete classification of complex Q-homology projective planes with numerically trivial canonical bundle. There are 31 types, and each has one-dimensional moduli. In fact, all moduli curves are rational and defined over Q, and we determine all families explicitly using extremal rational elliptic surfaces and Enriques involutions of base change type.

AB - We give a complete classification of complex Q-homology projective planes with numerically trivial canonical bundle. There are 31 types, and each has one-dimensional moduli. In fact, all moduli curves are rational and defined over Q, and we determine all families explicitly using extremal rational elliptic surfaces and Enriques involutions of base change type.

KW - Enriques surface

KW - root lattice

KW - smooth rational curve

UR - http://www.scopus.com/inward/record.url?scp=85161682772&partnerID=8YFLogxK

U2 - 10.2969/jmsj/87028702

DO - 10.2969/jmsj/87028702

M3 - Article

AN - SCOPUS:85161682772

VL - 75

SP - 329

EP - 366

JO - Journal of the Mathematical Society of Japan

JF - Journal of the Mathematical Society of Japan

SN - 0025-5645

IS - 1

ER -

Von denselben Autoren