Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 953-987 |
Seitenumfang | 35 |
Fachzeitschrift | Documenta mathematica |
Jahrgang | 17 |
Ausgabenummer | 2012 |
Publikationsstatus | Veröffentlicht - 2012 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Documenta mathematica, Jahrgang 17, Nr. 2012, 2012, S. 953-987.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Modularity of the Consani-Scholten quintic
AU - Gil, José Burgos
AU - Dieulefait, Luis
AU - Pacetti, Ariel
AU - Schütt, Matthias
PY - 2012
Y1 - 2012
N2 - We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livné method to induced fourdimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by José Burgos Gil and the second author.
AB - We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livné method to induced fourdimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by José Burgos Gil and the second author.
KW - Consani-Scholten quintic
KW - Faltings-Serre-Livné method
KW - Hilbert modular form
KW - Sturm bound
UR - http://www.scopus.com/inward/record.url?scp=84918526050&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:84918526050
VL - 17
SP - 953
EP - 987
JO - Documenta mathematica
JF - Documenta mathematica
SN - 1431-0635
IS - 2012
ER -