Modular forms and K3 surfaces

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • Harvard University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)106-131
Seitenumfang26
FachzeitschriftAdvances in mathematics
Jahrgang240
PublikationsstatusVeröffentlicht - 20 Juni 2013

Abstract

For every known Hecke eigenform of weight 3 with rational eigenvalues we exhibit a K3 surface over Q associated to the form. This answers a question asked independently by Mazur and van Straten. The proof builds on a classification of CM forms by the second author.

ASJC Scopus Sachgebiete

Zitieren

Modular forms and K3 surfaces. / Elkies, Noam D.; Schütt, Matthias.
in: Advances in mathematics, Jahrgang 240, 20.06.2013, S. 106-131.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Elkies ND, Schütt M. Modular forms and K3 surfaces. Advances in mathematics. 2013 Jun 20;240:106-131. doi: 10.1016/j.aim.2013.03.008
Elkies, Noam D. ; Schütt, Matthias. / Modular forms and K3 surfaces. in: Advances in mathematics. 2013 ; Jahrgang 240. S. 106-131.
Download
@article{6709977e11b34c22b9ceb8525838eb9c,
title = "Modular forms and K3 surfaces",
abstract = "For every known Hecke eigenform of weight 3 with rational eigenvalues we exhibit a K3 surface over Q associated to the form. This answers a question asked independently by Mazur and van Straten. The proof builds on a classification of CM forms by the second author. ",
keywords = "Complex multiplication, Modular form, Singular K3 surface, 14J28, 11F11, 11F23, 11G40, 14G10",
author = "Elkies, {Noam D.} and Matthias Sch{\"u}tt",
note = "Funding information: The first author gratefully acknowledges partial funding from NSF (grant DMS-0501029 ). The second author gratefully acknowledges partial funding from DFG (grants Schu 2266/2-1 , Schu 2266/2-2 ).",
year = "2013",
month = jun,
day = "20",
doi = "10.1016/j.aim.2013.03.008",
language = "English",
volume = "240",
pages = "106--131",
journal = "Advances in mathematics",
issn = "0001-8708",
publisher = "Academic Press Inc.",

}

Download

TY - JOUR

T1 - Modular forms and K3 surfaces

AU - Elkies, Noam D.

AU - Schütt, Matthias

N1 - Funding information: The first author gratefully acknowledges partial funding from NSF (grant DMS-0501029 ). The second author gratefully acknowledges partial funding from DFG (grants Schu 2266/2-1 , Schu 2266/2-2 ).

PY - 2013/6/20

Y1 - 2013/6/20

N2 - For every known Hecke eigenform of weight 3 with rational eigenvalues we exhibit a K3 surface over Q associated to the form. This answers a question asked independently by Mazur and van Straten. The proof builds on a classification of CM forms by the second author.

AB - For every known Hecke eigenform of weight 3 with rational eigenvalues we exhibit a K3 surface over Q associated to the form. This answers a question asked independently by Mazur and van Straten. The proof builds on a classification of CM forms by the second author.

KW - Complex multiplication

KW - Modular form

KW - Singular K3 surface

KW - 14J28

KW - 11F11

KW - 11F23

KW - 11G40

KW - 14G10

UR - http://www.scopus.com/inward/record.url?scp=84875780913&partnerID=8YFLogxK

U2 - 10.1016/j.aim.2013.03.008

DO - 10.1016/j.aim.2013.03.008

M3 - Article

AN - SCOPUS:84875780913

VL - 240

SP - 106

EP - 131

JO - Advances in mathematics

JF - Advances in mathematics

SN - 0001-8708

ER -

Von denselben Autoren