Modelling the causation of accidents: human performance separated system and human performance included system

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Yang Wang
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoktor der Ingenieurwissenschaften
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades26 Mai 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

Jedes Jahr ereignen sich weltweit Millionen von Arbeitsunfällen, die zahlreiche Opfer fordern und enorme wirtschaftliche Verluste zur Folge haben. Vorangegangene Studien aus dem Feld der Risikoeinschätzung zeigten, dass es wichtig ist die Wahrscheinlichkeit von Faktoren, welche zum Auftreten von Unfällen beitragen, zu quantifizieren. Mehrere Methoden, wie z. B. die Technik zur Vorhersage der menschlichen Fehlerrate (Technique for Human Error Rate Prediction, THERP), wurden dafür vorgeschlagen, potenzielle Risikofaktoren zu bewerten und die Systemsicherheit zu verbessern. Diese Methoden haben jedoch einige Einschränkungen, wie z.B. ihre geringe Generalisierbarkeit, die Behandlung von Unfallursachen und menschlichem Einfluss als zwei voneinander getrennte Forschungsthemen, die Notwendigkeit ausgiebiger Datensätze, oder die ausschließliche Abhängigkeit von Expertenwissen. Um diese Einschränkungen zu überwinden, 1) klassifiziert diese Dissertation die Systeme in zwei Kategorien. Zum einen in von menschlichem Einfluss separierte Systeme (Human Performance Separated System, HPSS) und zum anderen in Systeme mit menschlichem Einfluss (Human Performance Included System, HPIS); 2) entwickelt ein auf Bayes‘schen Netzwerken (BN) basierendes Unfallkausalitätsmodell, das auf beide Arten von Systemen angewendet werden kann, um den Einfluss menschlicher Wahrnehmung in HPSS und den Einfluss menschlichen Versagens in HPIS zu untersuchen; 3) untersucht zwei Methoden zur Analyse menschlichen Versagens. Die erste Methode geht von einer kognitiven Wahrnehmung aus und die zweite behandelt das menschliche Versagen als essenziellen Teil des Systems. 4) schlägt eine innovative Taxonomie namens Contributors Taxonomy for construction Occupational Accidents (CTCOA) für HPIS vor, die nicht nur auf die Unfallkausalität abzielt, sondern auch zur Rückverfolgung menschlichen Versagens im Bauwesen verwendet werden kann. 5) erstellt BN-Beispielmodelle aus unterschiedlichen Industriesektoren. Dazu zählen Gasturbinenausfälle als typisches Beispiel für HPSS-Maschinenversagen, das Multi-Attribute Technological Accidents Dataset (MATA-D) für einfaches HPIS-Systemversagen und das Contributors to Construction Occupational Accidents Dataset (CCOAD) für komplexes HPIS-Systemversagen. Diese drei BN-Modelle zeigen, wie die von uns vorgeschlagene Methode in Bezug auf spezifische Probleme aus verschiedenen Industriesektoren angepasst und angewendet werden kann. Unsere Analyse zeigt die Effizienz der Kombination von Expertenwissen und mathematischer Unabhängigkeitsanalyse bei der Identifizierung der wichtigsten Abhängigkeitsbeziehungen innerhalb der BN-Struktur. Vor der Parameteridentifizierung auf Basis von Expertenwissen sollten die Auswirkungen der menschlichen Wahrnehmung auf die Modellparameter gemessen werden. Die vorgeschlagene Methodik basierend auf der Kombination der menschlichen Zuverlässigkeitsanalyse mit statistischen Analysen kann zur Untersuchung menschlichen Versagens eingesetzt werden.

Zitieren

Modelling the causation of accidents: human performance separated system and human performance included system. / Wang, Yang.
Hannover, 2023. 151 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Wang, Y 2023, 'Modelling the causation of accidents: human performance separated system and human performance included system', Doktor der Ingenieurwissenschaften, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/13790
Download
@phdthesis{db30bfc268604e0a850d7ec73d55e0b8,
title = "Modelling the causation of accidents: human performance separated system and human performance included system",
abstract = "Millions of work-related accidents occur each year around the world, leading to a large number of deaths, injuries, and a huge economic cost. Previous studies on risk assessment have revealed that it is important to calculate the probabilities of factors that can contribute to the occurrence of accidents. Several methods, such as the Technique for Human Error Rate Prediction (THERP), have been proposed to evaluate potential risk factors and to improve system safety. However, these methods have some limitations, such as their low generalizability, treating accident causation and human factor as two separate research topics, requiring intensive data, or relying solely on expert judgement. To address these limitations, this dissertation 1) classifies systems into two types, Human Performance Separated System (HPSS) and Human Performance Included System (HPIS), depending on whether the system involves human performance; 2) develops accident causal models based on Bayesian Network (BN) that can be applied to both types of systems while examining the influence of human perception in HPSS and human errors in HPIS; 3) examines two methods for the analysis of human errors with the first method based on the cognitive view and the other method treating human errors as an essential part of the system; 4) proposes an innovative taxonomy as an example for HPIS, known as the Contributors Taxonomy for Construction Occupational Accidents (CTCOA), which not only targeting accident causation, but can also be used for tracking human error in construction; 5) builds example BN models in the different industrial sectors, including gas turbine failures as a typical example of HPSS machine failures, Multi-Attribute Technological Accidents Dataset (MATA-D) as simple HPIS failures, and Contributors to Construction Occupational Accidents Dataset (CCOAD) as complex HPIS failures. These three types of BN models demonstrate how our proposed methodology can be adapted to specific questions and how it can be applied in various industrial sectors. Our analysis demonstrates that it is efficient to combine expert judgement with mathematical independence analysis to identify the main dependency links for the BN structure in all models. The influence of human perception on model parameters should be measured before these parameters being identified based on expert judgement. Our proposed methodology can be used to study human errors by combining traditional human reliability analysis with statistical analysis.",
author = "Yang Wang",
year = "2023",
doi = "10.15488/13790",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Modelling the causation of accidents: human performance separated system and human performance included system

AU - Wang, Yang

PY - 2023

Y1 - 2023

N2 - Millions of work-related accidents occur each year around the world, leading to a large number of deaths, injuries, and a huge economic cost. Previous studies on risk assessment have revealed that it is important to calculate the probabilities of factors that can contribute to the occurrence of accidents. Several methods, such as the Technique for Human Error Rate Prediction (THERP), have been proposed to evaluate potential risk factors and to improve system safety. However, these methods have some limitations, such as their low generalizability, treating accident causation and human factor as two separate research topics, requiring intensive data, or relying solely on expert judgement. To address these limitations, this dissertation 1) classifies systems into two types, Human Performance Separated System (HPSS) and Human Performance Included System (HPIS), depending on whether the system involves human performance; 2) develops accident causal models based on Bayesian Network (BN) that can be applied to both types of systems while examining the influence of human perception in HPSS and human errors in HPIS; 3) examines two methods for the analysis of human errors with the first method based on the cognitive view and the other method treating human errors as an essential part of the system; 4) proposes an innovative taxonomy as an example for HPIS, known as the Contributors Taxonomy for Construction Occupational Accidents (CTCOA), which not only targeting accident causation, but can also be used for tracking human error in construction; 5) builds example BN models in the different industrial sectors, including gas turbine failures as a typical example of HPSS machine failures, Multi-Attribute Technological Accidents Dataset (MATA-D) as simple HPIS failures, and Contributors to Construction Occupational Accidents Dataset (CCOAD) as complex HPIS failures. These three types of BN models demonstrate how our proposed methodology can be adapted to specific questions and how it can be applied in various industrial sectors. Our analysis demonstrates that it is efficient to combine expert judgement with mathematical independence analysis to identify the main dependency links for the BN structure in all models. The influence of human perception on model parameters should be measured before these parameters being identified based on expert judgement. Our proposed methodology can be used to study human errors by combining traditional human reliability analysis with statistical analysis.

AB - Millions of work-related accidents occur each year around the world, leading to a large number of deaths, injuries, and a huge economic cost. Previous studies on risk assessment have revealed that it is important to calculate the probabilities of factors that can contribute to the occurrence of accidents. Several methods, such as the Technique for Human Error Rate Prediction (THERP), have been proposed to evaluate potential risk factors and to improve system safety. However, these methods have some limitations, such as their low generalizability, treating accident causation and human factor as two separate research topics, requiring intensive data, or relying solely on expert judgement. To address these limitations, this dissertation 1) classifies systems into two types, Human Performance Separated System (HPSS) and Human Performance Included System (HPIS), depending on whether the system involves human performance; 2) develops accident causal models based on Bayesian Network (BN) that can be applied to both types of systems while examining the influence of human perception in HPSS and human errors in HPIS; 3) examines two methods for the analysis of human errors with the first method based on the cognitive view and the other method treating human errors as an essential part of the system; 4) proposes an innovative taxonomy as an example for HPIS, known as the Contributors Taxonomy for Construction Occupational Accidents (CTCOA), which not only targeting accident causation, but can also be used for tracking human error in construction; 5) builds example BN models in the different industrial sectors, including gas turbine failures as a typical example of HPSS machine failures, Multi-Attribute Technological Accidents Dataset (MATA-D) as simple HPIS failures, and Contributors to Construction Occupational Accidents Dataset (CCOAD) as complex HPIS failures. These three types of BN models demonstrate how our proposed methodology can be adapted to specific questions and how it can be applied in various industrial sectors. Our analysis demonstrates that it is efficient to combine expert judgement with mathematical independence analysis to identify the main dependency links for the BN structure in all models. The influence of human perception on model parameters should be measured before these parameters being identified based on expert judgement. Our proposed methodology can be used to study human errors by combining traditional human reliability analysis with statistical analysis.

U2 - 10.15488/13790

DO - 10.15488/13790

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren