Modelling and Analysis of the Muskat Problem for Thin Fluid Layers

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)267-277
Seitenumfang11
FachzeitschriftJournal of Mathematical Fluid Mechanics
Jahrgang14
Ausgabenummer2
PublikationsstatusVeröffentlicht - 29 März 2011

Abstract

We consider the evolution of two thin fluid films in a porous medium. Starting from the classical equations modelling the Muskat problem we pass to the limit of small layer thickness and obtain a system of two coupled and degenerate parabolic equations for the films height. In the absence of surface tension forces we prove local well-posedness of the problem and show that the steady-states are exponentially stable.

ASJC Scopus Sachgebiete

Zitieren

Modelling and Analysis of the Muskat Problem for Thin Fluid Layers. / Escher, Joachim; Matioc, Anca Voichita; Matioc, Bogdan-Vasile.
in: Journal of Mathematical Fluid Mechanics, Jahrgang 14, Nr. 2, 29.03.2011, S. 267-277.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Escher J, Matioc AV, Matioc BV. Modelling and Analysis of the Muskat Problem for Thin Fluid Layers. Journal of Mathematical Fluid Mechanics. 2011 Mär 29;14(2):267-277. doi: 10.1007/s00021-011-0053-2
Escher, Joachim ; Matioc, Anca Voichita ; Matioc, Bogdan-Vasile. / Modelling and Analysis of the Muskat Problem for Thin Fluid Layers. in: Journal of Mathematical Fluid Mechanics. 2011 ; Jahrgang 14, Nr. 2. S. 267-277.
Download
@article{f76d9753da4940199491d73a26f82ed7,
title = "Modelling and Analysis of the Muskat Problem for Thin Fluid Layers",
abstract = "We consider the evolution of two thin fluid films in a porous medium. Starting from the classical equations modelling the Muskat problem we pass to the limit of small layer thickness and obtain a system of two coupled and degenerate parabolic equations for the films height. In the absence of surface tension forces we prove local well-posedness of the problem and show that the steady-states are exponentially stable.",
keywords = "Degenerate parabolic equations, Linearised stability, Muskat problem, Thin layers",
author = "Joachim Escher and Matioc, {Anca Voichita} and Bogdan-Vasile Matioc",
year = "2011",
month = mar,
day = "29",
doi = "10.1007/s00021-011-0053-2",
language = "English",
volume = "14",
pages = "267--277",
journal = "Journal of Mathematical Fluid Mechanics",
issn = "1422-6928",
publisher = "Birkhauser Verlag Basel",
number = "2",

}

Download

TY - JOUR

T1 - Modelling and Analysis of the Muskat Problem for Thin Fluid Layers

AU - Escher, Joachim

AU - Matioc, Anca Voichita

AU - Matioc, Bogdan-Vasile

PY - 2011/3/29

Y1 - 2011/3/29

N2 - We consider the evolution of two thin fluid films in a porous medium. Starting from the classical equations modelling the Muskat problem we pass to the limit of small layer thickness and obtain a system of two coupled and degenerate parabolic equations for the films height. In the absence of surface tension forces we prove local well-posedness of the problem and show that the steady-states are exponentially stable.

AB - We consider the evolution of two thin fluid films in a porous medium. Starting from the classical equations modelling the Muskat problem we pass to the limit of small layer thickness and obtain a system of two coupled and degenerate parabolic equations for the films height. In the absence of surface tension forces we prove local well-posedness of the problem and show that the steady-states are exponentially stable.

KW - Degenerate parabolic equations

KW - Linearised stability

KW - Muskat problem

KW - Thin layers

UR - http://www.scopus.com/inward/record.url?scp=79960623276&partnerID=8YFLogxK

U2 - 10.1007/s00021-011-0053-2

DO - 10.1007/s00021-011-0053-2

M3 - Article

AN - SCOPUS:79960623276

VL - 14

SP - 267

EP - 277

JO - Journal of Mathematical Fluid Mechanics

JF - Journal of Mathematical Fluid Mechanics

SN - 1422-6928

IS - 2

ER -

Von denselben Autoren