Modellheuristiken für effizientes forward model learning

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Queen Mary University of London
  • Otto-von-Guericke-Universität Magdeburg
Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungModelheuristics for efficient forward model learning
OriginalspracheDeutsch
Seiten (von - bis)848-857
Seitenumfang10
FachzeitschriftAt-Automatisierungstechnik
Jahrgang69
Ausgabenummer10
Frühes Online-Datum26 Okt. 2021
PublikationsstatusVeröffentlicht - 26 Okt. 2021
Extern publiziertJa

Abstract

Forward model learning, i. e., learning forward models from data, finds application in prediction-based control. This involves observing inputs and outputs of the system to build a transition model and make predictions about future time steps. In particular, complex state spaces require the use of specialized search and model building techniques. In this work, we present abstraction heuristics for high-dimensional state spaces, which allow to reduce the model complexity and, in many cases, yield an interpretable result. In the context of two case studies, we demonstrate the effectiveness of the presented procedure in the context of artificial intelligence in games and motion control scenarios. The transfer of these methods enables promising applications in automation engineering.

Schlagwörter

    autonomous control, decomposition of forward models, forward model learning, local forward model, object-based forward model

ASJC Scopus Sachgebiete

Zitieren

Modellheuristiken für effizientes forward model learning. / Dockhorn, Alexander; Kruse, Rudolf.
in: At-Automatisierungstechnik, Jahrgang 69, Nr. 10, 26.10.2021, S. 848-857.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Dockhorn A, Kruse R. Modellheuristiken für effizientes forward model learning. At-Automatisierungstechnik. 2021 Okt 26;69(10):848-857. Epub 2021 Okt 26. doi: 10.1515/auto-2021-0037
Download
@article{385fade208ae432bab0413df70bf28f5,
title = "Modellheuristiken f{\"u}r effizientes forward model learning",
abstract = "Forward model learning, i. e., learning forward models from data, finds application in prediction-based control. This involves observing inputs and outputs of the system to build a transition model and make predictions about future time steps. In particular, complex state spaces require the use of specialized search and model building techniques. In this work, we present abstraction heuristics for high-dimensional state spaces, which allow to reduce the model complexity and, in many cases, yield an interpretable result. In the context of two case studies, we demonstrate the effectiveness of the presented procedure in the context of artificial intelligence in games and motion control scenarios. The transfer of these methods enables promising applications in automation engineering.",
keywords = "autonomous control, decomposition of forward models, forward model learning, local forward model, object-based forward model",
author = "Alexander Dockhorn and Rudolf Kruse",
year = "2021",
month = oct,
day = "26",
doi = "10.1515/auto-2021-0037",
language = "Deutsch",
volume = "69",
pages = "848--857",
journal = "At-Automatisierungstechnik",
issn = "0178-2312",
publisher = "Walter de Gruyter GmbH",
number = "10",

}

Download

TY - JOUR

T1 - Modellheuristiken für effizientes forward model learning

AU - Dockhorn, Alexander

AU - Kruse, Rudolf

PY - 2021/10/26

Y1 - 2021/10/26

N2 - Forward model learning, i. e., learning forward models from data, finds application in prediction-based control. This involves observing inputs and outputs of the system to build a transition model and make predictions about future time steps. In particular, complex state spaces require the use of specialized search and model building techniques. In this work, we present abstraction heuristics for high-dimensional state spaces, which allow to reduce the model complexity and, in many cases, yield an interpretable result. In the context of two case studies, we demonstrate the effectiveness of the presented procedure in the context of artificial intelligence in games and motion control scenarios. The transfer of these methods enables promising applications in automation engineering.

AB - Forward model learning, i. e., learning forward models from data, finds application in prediction-based control. This involves observing inputs and outputs of the system to build a transition model and make predictions about future time steps. In particular, complex state spaces require the use of specialized search and model building techniques. In this work, we present abstraction heuristics for high-dimensional state spaces, which allow to reduce the model complexity and, in many cases, yield an interpretable result. In the context of two case studies, we demonstrate the effectiveness of the presented procedure in the context of artificial intelligence in games and motion control scenarios. The transfer of these methods enables promising applications in automation engineering.

KW - autonomous control

KW - decomposition of forward models

KW - forward model learning

KW - local forward model

KW - object-based forward model

UR - http://www.scopus.com/inward/record.url?scp=85117839499&partnerID=8YFLogxK

U2 - 10.1515/auto-2021-0037

DO - 10.1515/auto-2021-0037

M3 - Artikel

AN - SCOPUS:85117839499

VL - 69

SP - 848

EP - 857

JO - At-Automatisierungstechnik

JF - At-Automatisierungstechnik

SN - 0178-2312

IS - 10

ER -

Von denselben Autoren