Modellentwicklung und maschinelles Lernen erhöhen die Proteinausbeute

Publikation: Beitrag in FachzeitschriftÜbersichtsarbeitForschungPeer-Review

Autorschaft

  • Jan Hendrik Trösemeier
  • Sophia Rudorf
  • Holger Lößner
  • Benjamin Hofner
  • Christel Kamp

Externe Organisationen

  • Paul-Ehrlich-Institut Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel
  • Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungModel development and machine learning increase protein yield
OriginalspracheDeutsch
Seiten (von - bis)262-264
Seitenumfang3
FachzeitschriftBioSpektrum
Jahrgang26
Ausgabenummer3
Frühes Online-Datum14 Mai 2020
PublikationsstatusVeröffentlicht - Mai 2020
Extern publiziertJa

Abstract

Heterologous expression of genes requires their adaptation to the host organism to achieve adequate protein synthesis rates. Typically codons are adjusted to resemble those seen in highly expressed genes of the host organism which lacks a deeper understanding of codon optimality. The codon-specific elongation model (COSEM) identifies optimal codon choices by simulating ribosome dynamics during mRNA translation. COSEM is used in combination with machine learning techniques to predict protein abundance and to optimize codon usage.

ASJC Scopus Sachgebiete

Zitieren

Modellentwicklung und maschinelles Lernen erhöhen die Proteinausbeute. / Trösemeier, Jan Hendrik; Rudorf, Sophia; Lößner, Holger et al.
in: BioSpektrum, Jahrgang 26, Nr. 3, 05.2020, S. 262-264.

Publikation: Beitrag in FachzeitschriftÜbersichtsarbeitForschungPeer-Review

Trösemeier, JH, Rudorf, S, Lößner, H, Hofner, B & Kamp, C 2020, 'Modellentwicklung und maschinelles Lernen erhöhen die Proteinausbeute', BioSpektrum, Jg. 26, Nr. 3, S. 262-264. https://doi.org/10.1007/s12268-020-1369-3
Trösemeier, J. H., Rudorf, S., Lößner, H., Hofner, B., & Kamp, C. (2020). Modellentwicklung und maschinelles Lernen erhöhen die Proteinausbeute. BioSpektrum, 26(3), 262-264. https://doi.org/10.1007/s12268-020-1369-3
Trösemeier JH, Rudorf S, Lößner H, Hofner B, Kamp C. Modellentwicklung und maschinelles Lernen erhöhen die Proteinausbeute. BioSpektrum. 2020 Mai;26(3):262-264. Epub 2020 Mai 14. doi: 10.1007/s12268-020-1369-3
Trösemeier, Jan Hendrik ; Rudorf, Sophia ; Lößner, Holger et al. / Modellentwicklung und maschinelles Lernen erhöhen die Proteinausbeute. in: BioSpektrum. 2020 ; Jahrgang 26, Nr. 3. S. 262-264.
Download
@article{797f0aa53b6c4702a636489cdcf4ac7e,
title = "Modellentwicklung und maschinelles Lernen erh{\"o}hen die Proteinausbeute",
abstract = "Heterologous expression of genes requires their adaptation to the host organism to achieve adequate protein synthesis rates. Typically codons are adjusted to resemble those seen in highly expressed genes of the host organism which lacks a deeper understanding of codon optimality. The codon-specific elongation model (COSEM) identifies optimal codon choices by simulating ribosome dynamics during mRNA translation. COSEM is used in combination with machine learning techniques to predict protein abundance and to optimize codon usage.",
author = "Tr{\"o}semeier, {Jan Hendrik} and Sophia Rudorf and Holger L{\"o}{\ss}ner and Benjamin Hofner and Christel Kamp",
note = "Publisher Copyright: {\textcopyright} 2020, Die Autoren.",
year = "2020",
month = may,
doi = "10.1007/s12268-020-1369-3",
language = "Deutsch",
volume = "26",
pages = "262--264",
number = "3",

}

Download

TY - JOUR

T1 - Modellentwicklung und maschinelles Lernen erhöhen die Proteinausbeute

AU - Trösemeier, Jan Hendrik

AU - Rudorf, Sophia

AU - Lößner, Holger

AU - Hofner, Benjamin

AU - Kamp, Christel

N1 - Publisher Copyright: © 2020, Die Autoren.

PY - 2020/5

Y1 - 2020/5

N2 - Heterologous expression of genes requires their adaptation to the host organism to achieve adequate protein synthesis rates. Typically codons are adjusted to resemble those seen in highly expressed genes of the host organism which lacks a deeper understanding of codon optimality. The codon-specific elongation model (COSEM) identifies optimal codon choices by simulating ribosome dynamics during mRNA translation. COSEM is used in combination with machine learning techniques to predict protein abundance and to optimize codon usage.

AB - Heterologous expression of genes requires their adaptation to the host organism to achieve adequate protein synthesis rates. Typically codons are adjusted to resemble those seen in highly expressed genes of the host organism which lacks a deeper understanding of codon optimality. The codon-specific elongation model (COSEM) identifies optimal codon choices by simulating ribosome dynamics during mRNA translation. COSEM is used in combination with machine learning techniques to predict protein abundance and to optimize codon usage.

UR - http://www.scopus.com/inward/record.url?scp=85085061203&partnerID=8YFLogxK

U2 - 10.1007/s12268-020-1369-3

DO - 10.1007/s12268-020-1369-3

M3 - Übersichtsarbeit

AN - SCOPUS:85085061203

VL - 26

SP - 262

EP - 264

JO - BioSpektrum

JF - BioSpektrum

SN - 0947-0867

IS - 3

ER -

Von denselben Autoren