Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 543-552 |
Seitenumfang | 10 |
Fachzeitschrift | Journal of the American Society for Horticultural Science |
Jahrgang | 134 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - Sept. 2009 |
Abstract
The combination of quantitative trait loci (QTL) analysis and ecophysiological modeling has been suggested as an approach to reveal the genetic basis of complex traits since phenotypes change with time and environmental conditions and the variation within populations can be described by genotype-specific parameteri- zation of response curves on time and influential environmental factors. The objectives of the present study are a genotype-specific parameterization of a model describing leaf area development under well-watered and drought stress conditions, the use of QTL for estimating model input parameters, an evaluation of the model, and a comparison of the genotype-specific and QTL-based model parameterization. We used a two-phase linear function to describe preflowering leaf area development in a Brassica oleracea L. doubled haploid population. To illustrate effects of drought on leaf growth, the function was combined with a plateau function, which estimates the soil water status at which stress effects begin to reduce leaf expansion, a genotype-specific slope of the response to soil water status, and the soil water status at which leaf expansion becomes zero. A total number of 14 QTL were detected on the parameters of the two-phase linear function describing preflowering leaf area development and the plateau function describing the effects of drought on leaf area development. Nine of these QTL colocalized to QTL detected on data of static leaf area measurements and osmotic adjustment. The entire model was able to distinguish between genotypes during later growth stages under well-watered and drought stress conditions. However, the predictability was largely reduced when drought stress became more severe at the final measurement dates. Independent evaluation trials showed that the accuracy of the model was on the same level or even higher when genotype specific input parameters were replaced by allele-specific QTL effects.
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of the American Society for Horticultural Science, Jahrgang 134, Nr. 5, 09.2009, S. 543-552.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Modeling the effects of drought stress on leaf development in a Brassica oleracea doubled haploid population using two-phase linear functions
AU - Uptmoor, Ralf
AU - Osei-Kwarteng, Mildred
AU - Gürtler, Susanne
AU - Stutzel, Hartmut
PY - 2009/9
Y1 - 2009/9
N2 - The combination of quantitative trait loci (QTL) analysis and ecophysiological modeling has been suggested as an approach to reveal the genetic basis of complex traits since phenotypes change with time and environmental conditions and the variation within populations can be described by genotype-specific parameteri- zation of response curves on time and influential environmental factors. The objectives of the present study are a genotype-specific parameterization of a model describing leaf area development under well-watered and drought stress conditions, the use of QTL for estimating model input parameters, an evaluation of the model, and a comparison of the genotype-specific and QTL-based model parameterization. We used a two-phase linear function to describe preflowering leaf area development in a Brassica oleracea L. doubled haploid population. To illustrate effects of drought on leaf growth, the function was combined with a plateau function, which estimates the soil water status at which stress effects begin to reduce leaf expansion, a genotype-specific slope of the response to soil water status, and the soil water status at which leaf expansion becomes zero. A total number of 14 QTL were detected on the parameters of the two-phase linear function describing preflowering leaf area development and the plateau function describing the effects of drought on leaf area development. Nine of these QTL colocalized to QTL detected on data of static leaf area measurements and osmotic adjustment. The entire model was able to distinguish between genotypes during later growth stages under well-watered and drought stress conditions. However, the predictability was largely reduced when drought stress became more severe at the final measurement dates. Independent evaluation trials showed that the accuracy of the model was on the same level or even higher when genotype specific input parameters were replaced by allele-specific QTL effects.
AB - The combination of quantitative trait loci (QTL) analysis and ecophysiological modeling has been suggested as an approach to reveal the genetic basis of complex traits since phenotypes change with time and environmental conditions and the variation within populations can be described by genotype-specific parameteri- zation of response curves on time and influential environmental factors. The objectives of the present study are a genotype-specific parameterization of a model describing leaf area development under well-watered and drought stress conditions, the use of QTL for estimating model input parameters, an evaluation of the model, and a comparison of the genotype-specific and QTL-based model parameterization. We used a two-phase linear function to describe preflowering leaf area development in a Brassica oleracea L. doubled haploid population. To illustrate effects of drought on leaf growth, the function was combined with a plateau function, which estimates the soil water status at which stress effects begin to reduce leaf expansion, a genotype-specific slope of the response to soil water status, and the soil water status at which leaf expansion becomes zero. A total number of 14 QTL were detected on the parameters of the two-phase linear function describing preflowering leaf area development and the plateau function describing the effects of drought on leaf area development. Nine of these QTL colocalized to QTL detected on data of static leaf area measurements and osmotic adjustment. The entire model was able to distinguish between genotypes during later growth stages under well-watered and drought stress conditions. However, the predictability was largely reduced when drought stress became more severe at the final measurement dates. Independent evaluation trials showed that the accuracy of the model was on the same level or even higher when genotype specific input parameters were replaced by allele-specific QTL effects.
KW - Crop growth simulation
KW - In silico breeding
KW - Quantitative trait loci analysis
UR - http://www.scopus.com/inward/record.url?scp=70450172124&partnerID=8YFLogxK
U2 - 10.21273/jashs.134.5.543
DO - 10.21273/jashs.134.5.543
M3 - Article
AN - SCOPUS:70450172124
VL - 134
SP - 543
EP - 552
JO - Journal of the American Society for Horticultural Science
JF - Journal of the American Society for Horticultural Science
SN - 0003-1062
IS - 5
ER -