Modeling of metal-organic frameworks for optical applications

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Marvin Treger

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades14 Dez. 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

Metall-organische Gerüste (engl. metal-organic frameworks, MOFs) stellen eine bedeutende Gruppe innerhalb der porösen Hybridmaterialien dar. Sie bestehen aus Metallionen oder Metall- Oxo-Clustern, die als anorganische Baueinheiten bezeichnet werden und durch organische Liganden verknüpft sind, die als Linker bezeichnet werden. MOFs wurden intensiv im Hinblick auf klassische Anwendungsgebiete für poröse Materialien wie beispielsweise Katalyse und Gastrennung betrachtet. Im Gegensatz dazu werden in dieser Arbeit MOFs für die Verwendung als Materialien für optische Anwendungen untersucht. Hierbei ist insbesondere der Brechungsindex (refraktiver Index, RI) von besonderer Relevanz. In dieser Arbeit wurde ein ab initio Simulationsprotokoll entwickelt, das eine verlässliche und präzise Berechnung der elektronischen Struktur und des RIs von MOFs ermöglicht. Hierzu wird die Dichtefunktionaltheorie (DFT) verwendet, um ausgehend von Einkristallstrukturdaten Modelle von MOFs zu erstellen und die optischen Eigenschaften zu berechnen. Beginnend mit dem bekannten MOF UiO-66 und dessen etablierten nitro- und aminofunktionalisierten Derivaten UiO-66-NO2 und UiO-66-NH2 wurde dieses Simulationsprotokoll angewendet. Anschließend wurde die Verwendung von „push-pull“-Linkermolekülen zum Aufbau des UiO-66 Gerüsts untersucht und das neue UiO-66-(NH2,NO2) Derivat computer-chemisch charakterisiert. Weiterhin wurde die Verwendung von monohalogenierten Linkermolekülen untersucht, mit welchen die UiO-66-X (𝑋 = F, Cl, Br, I) Derivate erhalten werden können. Zusätzlich wurde das neue UiO-66-I2 Derivat vorgestellt, um im sichtbaren Spektralbereich einen hohen RI bei gleichzeitiger Transparenz zu erhalten. Das im ersten Teil dieser Arbeit vorgestellte Simulationsprotokoll erlaubt ein tieferes Verständnis des Einflusses der modularen Komponenten eines MOFs auf den RI, aber ist mit einem hohen Rechenaufwand verbunden. Daher wurde ein weiteres effizienteres Simulationsprotokoll zur Berechnung des RIs von MOFs entwickelt. Dieses Protokoll basiert auf der Fragmentierung von MOFs, so dass die Polarisierbarkeiten der modularen Komponenten eines MOFs separat mittels DFT berechnet werden konnten. Anschließend wurde die Polarisierbarkeit des MOFs und der entsprechende RI unter der Verwendung der Lorenz-Lorentz-Gleichung berechnet.

Zitieren

Modeling of metal-organic frameworks for optical applications. / Treger, Marvin.
Hannover, 2023. 103 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Treger, M 2023, 'Modeling of metal-organic frameworks for optical applications', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/15766
Treger, M. (2023). Modeling of metal-organic frameworks for optical applications. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/15766
Treger M. Modeling of metal-organic frameworks for optical applications. Hannover, 2023. 103 S. doi: 10.15488/15766
Treger, Marvin. / Modeling of metal-organic frameworks for optical applications. Hannover, 2023. 103 S.
Download
@phdthesis{3d86372a58494b789b9169d97cdbab6d,
title = "Modeling of metal-organic frameworks for optical applications",
abstract = "Metal-organic frameworks (MOFs) are an important class of porous hybrid materials. They consist of metal ions or metal-oxo clusters forming the so-called inorganic building units connected by organic ligands acting as linker molecules leading to an intrinsic porosity of the framework. MOFs have been discussed intensively with regard to classical applications of porous materials like catalysis and gas separation. In this work, a different aspect is focused, namely the use of MOFs as optical materials. One fundamental property in this respect is the refractive index (RI). To ensure the reliable and precise calculation of the RI of MOFs a novel ab initio simulation protocol was developed in this work. By applying density functional theory (DFT), accurate models of MOF crystal structures were prepared and the optical properties were calculated precisely. Starting with the well-known UiO-66 MOF and its established nitro- and aminofunctionalized derivatives UiO-66-NO2 and UiO-66-NH2, this simulation protocol was used to calculate the electronic structures and the corresponding optical properties. Furthermore, the incorporation of “push–pull” linkers into the UiO-66 framework was studied to allow a further tuning of the RI of the parent UiO-66 MOF. In this context, a novel UiO-66 analogue denoted as UiO-66-(NH2,NO2) was presented. In addition, the use of halogenated linkers yielding the well-known monohalogenated UiO-66 derivatives denoted as UiO-66-X (𝑋 = F, Cl, Br, I) was studied. To obtain high RI values while preserving the transparency in the visible spectral region, a novel dihalogenated UiO-66 derivative denoted as UiO-66-I2 was introduced. The simulation protocol developed in the first part of this work allows a detailed study of the electronic structure of MOFs and a better understanding how the the various modular components of a MOF influence its RI. This protocol is computationally demanding. As a consequence, a second, more efficient simulation protocol was presented allowing the screening of MOFs with regard to their RI. This simulation protocol is based on a fragmentation scheme for MOFs allowing the separate calculation of the polarizability of the modular components of MOFs using DFT. These polarizabilities were used to compute the total polarizability of a MOF and subsequently the corresponding RI by applying the Lorenz-Lorentz equation.",
author = "Marvin Treger",
year = "2023",
doi = "10.15488/15766",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Modeling of metal-organic frameworks for optical applications

AU - Treger, Marvin

PY - 2023

Y1 - 2023

N2 - Metal-organic frameworks (MOFs) are an important class of porous hybrid materials. They consist of metal ions or metal-oxo clusters forming the so-called inorganic building units connected by organic ligands acting as linker molecules leading to an intrinsic porosity of the framework. MOFs have been discussed intensively with regard to classical applications of porous materials like catalysis and gas separation. In this work, a different aspect is focused, namely the use of MOFs as optical materials. One fundamental property in this respect is the refractive index (RI). To ensure the reliable and precise calculation of the RI of MOFs a novel ab initio simulation protocol was developed in this work. By applying density functional theory (DFT), accurate models of MOF crystal structures were prepared and the optical properties were calculated precisely. Starting with the well-known UiO-66 MOF and its established nitro- and aminofunctionalized derivatives UiO-66-NO2 and UiO-66-NH2, this simulation protocol was used to calculate the electronic structures and the corresponding optical properties. Furthermore, the incorporation of “push–pull” linkers into the UiO-66 framework was studied to allow a further tuning of the RI of the parent UiO-66 MOF. In this context, a novel UiO-66 analogue denoted as UiO-66-(NH2,NO2) was presented. In addition, the use of halogenated linkers yielding the well-known monohalogenated UiO-66 derivatives denoted as UiO-66-X (𝑋 = F, Cl, Br, I) was studied. To obtain high RI values while preserving the transparency in the visible spectral region, a novel dihalogenated UiO-66 derivative denoted as UiO-66-I2 was introduced. The simulation protocol developed in the first part of this work allows a detailed study of the electronic structure of MOFs and a better understanding how the the various modular components of a MOF influence its RI. This protocol is computationally demanding. As a consequence, a second, more efficient simulation protocol was presented allowing the screening of MOFs with regard to their RI. This simulation protocol is based on a fragmentation scheme for MOFs allowing the separate calculation of the polarizability of the modular components of MOFs using DFT. These polarizabilities were used to compute the total polarizability of a MOF and subsequently the corresponding RI by applying the Lorenz-Lorentz equation.

AB - Metal-organic frameworks (MOFs) are an important class of porous hybrid materials. They consist of metal ions or metal-oxo clusters forming the so-called inorganic building units connected by organic ligands acting as linker molecules leading to an intrinsic porosity of the framework. MOFs have been discussed intensively with regard to classical applications of porous materials like catalysis and gas separation. In this work, a different aspect is focused, namely the use of MOFs as optical materials. One fundamental property in this respect is the refractive index (RI). To ensure the reliable and precise calculation of the RI of MOFs a novel ab initio simulation protocol was developed in this work. By applying density functional theory (DFT), accurate models of MOF crystal structures were prepared and the optical properties were calculated precisely. Starting with the well-known UiO-66 MOF and its established nitro- and aminofunctionalized derivatives UiO-66-NO2 and UiO-66-NH2, this simulation protocol was used to calculate the electronic structures and the corresponding optical properties. Furthermore, the incorporation of “push–pull” linkers into the UiO-66 framework was studied to allow a further tuning of the RI of the parent UiO-66 MOF. In this context, a novel UiO-66 analogue denoted as UiO-66-(NH2,NO2) was presented. In addition, the use of halogenated linkers yielding the well-known monohalogenated UiO-66 derivatives denoted as UiO-66-X (𝑋 = F, Cl, Br, I) was studied. To obtain high RI values while preserving the transparency in the visible spectral region, a novel dihalogenated UiO-66 derivative denoted as UiO-66-I2 was introduced. The simulation protocol developed in the first part of this work allows a detailed study of the electronic structure of MOFs and a better understanding how the the various modular components of a MOF influence its RI. This protocol is computationally demanding. As a consequence, a second, more efficient simulation protocol was presented allowing the screening of MOFs with regard to their RI. This simulation protocol is based on a fragmentation scheme for MOFs allowing the separate calculation of the polarizability of the modular components of MOFs using DFT. These polarizabilities were used to compute the total polarizability of a MOF and subsequently the corresponding RI by applying the Lorenz-Lorentz equation.

U2 - 10.15488/15766

DO - 10.15488/15766

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren