Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 19841-19850 |
Seitenumfang | 10 |
Fachzeitschrift | International Journal of Hydrogen Energy |
Jahrgang | 43 |
Ausgabenummer | 43 |
Frühes Online-Datum | 1 Okt. 2018 |
Publikationsstatus | Veröffentlicht - 25 Okt. 2018 |
Abstract
Direct conversion of thermal energy to electric energy with thermoelectric generators is an attractive technique to recover low-temperature heat. Thermoelectric generators based on galvanic cells (thermocells) provide promising results with respect to the Seebeck coefficient. In this study, based on the theory of non-equilibrium thermodynamics, we simulated a thermocell with hydrogen gas electrodes and a proton exchange membrane. We calculated a maximum power density of 1461 mW/m2 and a thermal efficiency of 2% relative to the Carnot efficiency for a cell operating with the same gas composition at both the anode and the cathode, but fully saturated at the anode. We predict a Seebeck coefficient in the range of 0.7–1.8 mV/K, higher than those of classical thermoelectric generators. The thermocell presented here provides promising values regarding the Seebeck coefficient.
ASJC Scopus Sachgebiete
- Energie (insg.)
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Energie (insg.)
- Feuerungstechnik
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Energie (insg.)
- Energieanlagenbau und Kraftwerkstechnik
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Journal of Hydrogen Energy, Jahrgang 43, Nr. 43, 25.10.2018, S. 19841-19850.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Modeling a thermocell with proton exchange membrane and hydrogen electrodes
AU - Marquardt, T.
AU - Valadez Huerta, G.
AU - Kabelac, S.
N1 - Publisher Copyright: © 2018 Hydrogen Energy Publications LLC Copyright: Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/10/25
Y1 - 2018/10/25
N2 - Direct conversion of thermal energy to electric energy with thermoelectric generators is an attractive technique to recover low-temperature heat. Thermoelectric generators based on galvanic cells (thermocells) provide promising results with respect to the Seebeck coefficient. In this study, based on the theory of non-equilibrium thermodynamics, we simulated a thermocell with hydrogen gas electrodes and a proton exchange membrane. We calculated a maximum power density of 1461 mW/m2 and a thermal efficiency of 2% relative to the Carnot efficiency for a cell operating with the same gas composition at both the anode and the cathode, but fully saturated at the anode. We predict a Seebeck coefficient in the range of 0.7–1.8 mV/K, higher than those of classical thermoelectric generators. The thermocell presented here provides promising values regarding the Seebeck coefficient.
AB - Direct conversion of thermal energy to electric energy with thermoelectric generators is an attractive technique to recover low-temperature heat. Thermoelectric generators based on galvanic cells (thermocells) provide promising results with respect to the Seebeck coefficient. In this study, based on the theory of non-equilibrium thermodynamics, we simulated a thermocell with hydrogen gas electrodes and a proton exchange membrane. We calculated a maximum power density of 1461 mW/m2 and a thermal efficiency of 2% relative to the Carnot efficiency for a cell operating with the same gas composition at both the anode and the cathode, but fully saturated at the anode. We predict a Seebeck coefficient in the range of 0.7–1.8 mV/K, higher than those of classical thermoelectric generators. The thermocell presented here provides promising values regarding the Seebeck coefficient.
KW - Polymer electrolyte membrane
KW - Thermocell
KW - Thermogalvanic
UR - http://www.scopus.com/inward/record.url?scp=85054140333&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2018.09.007
DO - 10.1016/j.ijhydene.2018.09.007
M3 - Article
AN - SCOPUS:85054140333
VL - 43
SP - 19841
EP - 19850
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
SN - 0360-3199
IS - 43
ER -