Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | L30 |
Fachzeitschrift | Astrophysical Journal Letters |
Jahrgang | 941 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 16 Dez. 2022 |
Abstract
We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25 to 1600 Hz, as well as ranges in orbital speed, frequency, and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100 and 200 Hz, correspond to an amplitude h0 of about 10−25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4 × 10−26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically marginalized upper limits are close to the predicted amplitude from about 70 to 100 Hz; the limits assuming that the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40 to 200 Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500 Hz or more.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Astronomie und Astrophysik
- Erdkunde und Planetologie (insg.)
- Astronomie und Planetologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Astrophysical Journal Letters, Jahrgang 941, Nr. 2, L30, 16.12.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Model-based Cross-correlation Search for Gravitational Waves from the Low-mass X-Ray Binary Scorpius X-1 in LIGO O3 Data
AU - The LIGO Scientific Collaboration
AU - the KAGRA Collaboration
AU - The Virgo Collaboration
AU - Abbott, R.
AU - Abe, H.
AU - Acernese, F.
AU - Ackley, K.
AU - Adhicary, S.
AU - Adhikari, N.
AU - Adhikari, R. X.
AU - Adkins, V. K.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agarwal, D.
AU - Agathos, M.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Akutsu, T.
AU - Albanesi, S.
AU - Alfaidi, R. A.
AU - Alléné, C.
AU - Allocca, A.
AU - Altin, P. A.
AU - Amato, A.
AU - Anand, S.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Ando, M.
AU - Andrade, T.
AU - Bose, S.
AU - Carlassara, M.
AU - Choudhary, R. K.
AU - Danilishin, S.
AU - Danzmann, K.
AU - Gupta, S. K.
AU - Heidt, A.
AU - Heurs, M.
AU - Hreibi, A.
AU - Johny, N.
AU - Junker, J.
AU - Knust, N.
AU - Kossak, R. V.
AU - Lück, H.
AU - Matiushechkina, M.
AU - Schulte, B. W.
AU - Vahlbruch, H.
AU - Wilken, D.
AU - Willke, B.
AU - Wu, D. S.
AU - Zhang, R.
AU - Bergamin, Fabio
AU - Bisht, Aparna
AU - Bode, Nina
AU - Booker, Phillip
AU - Brinkmann, Marc
AU - García-Quirós, C.
AU - Heinze, J.
AU - Hochheim, S.
AU - Kastaun, Wolfgang
AU - Kirchhoff, R.
AU - Koch, Philip
AU - Köhlenbeck, S. M.
AU - Kranzhoff, S. Luise
AU - Kringel, Volker
AU - Kuehn, G.
AU - Leavey, S.
AU - Lehmann, J.
AU - Lough, James
AU - Mehmet, Moritz
AU - Mukund, Nikhil
AU - Nadji, S. L.
AU - Ohme, F.
AU - Schneewind, M.
AU - Schutz, B. F.
AU - Venneberg, J.
AU - von Wrangel, J.
AU - Weinert, Michael
AU - Wellmann, F.
AU - Weßels, Peter
AU - Woehler, J.
N1 - Funding Information: This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361, and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF), Computing Infrastructure Project of KISTI-GSDC, Korea Astronomy and Space Science Institute (KASI), and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK. Funding Information: This material is based on work supported by NSF's LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research (NWO) for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies, as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d’Innovació Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union—European Regional Development Fund, Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources.
PY - 2022/12/16
Y1 - 2022/12/16
N2 - We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25 to 1600 Hz, as well as ranges in orbital speed, frequency, and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100 and 200 Hz, correspond to an amplitude h0 of about 10−25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4 × 10−26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically marginalized upper limits are close to the predicted amplitude from about 70 to 100 Hz; the limits assuming that the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40 to 200 Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500 Hz or more.
AB - We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25 to 1600 Hz, as well as ranges in orbital speed, frequency, and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100 and 200 Hz, correspond to an amplitude h0 of about 10−25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4 × 10−26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically marginalized upper limits are close to the predicted amplitude from about 70 to 100 Hz; the limits assuming that the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40 to 200 Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500 Hz or more.
UR - http://www.scopus.com/inward/record.url?scp=85146226671&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/aca1b0
DO - 10.3847/2041-8213/aca1b0
M3 - Article
AN - SCOPUS:85146226671
VL - 941
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
SN - 2041-8205
IS - 2
M1 - L30
ER -