Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | The Semantic Web |
Untertitel | ESWC 2023 Satellite Events |
Herausgeber/-innen | Catia Pesquita, Hala Skaf-Molli, Vasilis Efthymiou, Sabrina Kirrane, Axel Ngonga, Diego Collarana, Renato Cerqueira, Mehwish Alam, Cassia Trojahn, Sven Hertling |
Seiten | 69-74 |
Seitenumfang | 6 |
ISBN (elektronisch) | 978-3-031-43458-7 |
Publikationsstatus | Veröffentlicht - 2023 |
Publikationsreihe
Name | Lecture Notes in Computer Science |
---|---|
Band | 13998 |
ISSN (Print) | 0302-9743 |
ISSN (elektronisch) | 1611-3349 |
Abstract
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
The Semantic Web: ESWC 2023 Satellite Events. Hrsg. / Catia Pesquita; Hala Skaf-Molli; Vasilis Efthymiou; Sabrina Kirrane; Axel Ngonga; Diego Collarana; Renato Cerqueira; Mehwish Alam; Cassia Trojahn; Sven Hertling. 2023. S. 69-74 (Lecture Notes in Computer Science; Band 13998).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Beitrag in Buch/Sammelwerk › Forschung › Peer-Review
}
TY - CHAP
T1 - Mining Symbolic Rules to Explain Lung Cancer Treatments
AU - Purohit, Disha
AU - Vidal, Maria-Esther
N1 - Funding Information: This work has been supported by the project TrustKG - Transforming Data in Trustable Insights with grant P99/2020 and the EraMed project P4-LUCAT (GA No. 53000015).
PY - 2023
Y1 - 2023
N2 - Knowledge Graphs (KGs) represent the convergence of data and knowledge as factual statements; they allow for the enrichment of decision-making semantically. Symbolic inductive learning enables uncovering relevant patterns, expressed, for example, as Horn clauses. Albeit powerful, existing symbolic inductive learning frameworks may mine many rules, being difficult for a user to extract actionable insights. This demo illustrates a pipeline to analyze mined logical rules toward discovering meaningful insights. The demo puts into perspective the role of semantic types in guiding the exploration of mined rules. Participants will observe strategies to traverse the mined logical statements and how the outcomes reveal patterns in the prescription of lung cancer treatments. A video is available online (https://www.youtube.com/watch?v=CN4a3kUjfJ4 &ab_channel=TIBSDMGroup), a Jupyter notebook executes a live demos (https://mybinder.org/v2/gh/SDM-TIB/DIGGER-ESWC2023Demo/HEAD?labpath=Mining%20Symbolic%20Rules%20To%20Explain%20Lung%20Cancer%20Treatments.ipynb), and source-code is available in GitHub (https://github.com/SDM-TIB/Mining_Symbolic_Rules_ESWC2023Demo).
AB - Knowledge Graphs (KGs) represent the convergence of data and knowledge as factual statements; they allow for the enrichment of decision-making semantically. Symbolic inductive learning enables uncovering relevant patterns, expressed, for example, as Horn clauses. Albeit powerful, existing symbolic inductive learning frameworks may mine many rules, being difficult for a user to extract actionable insights. This demo illustrates a pipeline to analyze mined logical rules toward discovering meaningful insights. The demo puts into perspective the role of semantic types in guiding the exploration of mined rules. Participants will observe strategies to traverse the mined logical statements and how the outcomes reveal patterns in the prescription of lung cancer treatments. A video is available online (https://www.youtube.com/watch?v=CN4a3kUjfJ4 &ab_channel=TIBSDMGroup), a Jupyter notebook executes a live demos (https://mybinder.org/v2/gh/SDM-TIB/DIGGER-ESWC2023Demo/HEAD?labpath=Mining%20Symbolic%20Rules%20To%20Explain%20Lung%20Cancer%20Treatments.ipynb), and source-code is available in GitHub (https://github.com/SDM-TIB/Mining_Symbolic_Rules_ESWC2023Demo).
UR - http://www.scopus.com/inward/record.url?scp=85175946468&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-43458-7_13
DO - 10.1007/978-3-031-43458-7_13
M3 - Contribution to book/anthology
SN - 978-3-031-43457-0
T3 - Lecture Notes in Computer Science
SP - 69
EP - 74
BT - The Semantic Web
A2 - Pesquita, Catia
A2 - Skaf-Molli, Hala
A2 - Efthymiou, Vasilis
A2 - Kirrane, Sabrina
A2 - Ngonga, Axel
A2 - Collarana, Diego
A2 - Cerqueira, Renato
A2 - Alam, Mehwish
A2 - Trojahn, Cassia
A2 - Hertling, Sven
ER -