Loading [MathJax]/extensions/tex2jax.js

Minimizing the relative entropy in a face

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 2
  • Captures
    • Readers: 1
see details

Details

OriginalspracheEnglisch
Seiten (von - bis)7-14
Seitenumfang8
FachzeitschriftLett. Math. Phys.
Jahrgang19
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1990

Abstract

For a separating state -algebra A, we give a limit formula for the minimal relative entropy S(.) in any face, as well as for the unique minimizer. In terms of this minimum, we define a superadditive function rho on the faces of A. In the case of a W*-algebra and normal rho can be considered as a function on the projection lattice. We show that the largest additive function on the projection lattice of an abelian W*-subalgebra, which is dominated by rho, is given by a normal positive, but not necessarily normalized linear functional on A. This functional is the unique solution of a minimal entropy problem.

Zitieren

Minimizing the relative entropy in a face. / Raggio, G. A.; Werner, R. F.
in: Lett. Math. Phys., Jahrgang 19, Nr. 1, 1990, S. 7-14.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Raggio GA, Werner RF. Minimizing the relative entropy in a face. Lett. Math. Phys. 1990;19(1):7-14. doi: 10.1007/BF00402255
Raggio, G. A. ; Werner, R. F. / Minimizing the relative entropy in a face. in: Lett. Math. Phys. 1990 ; Jahrgang 19, Nr. 1. S. 7-14.
Download
@article{ac2b0b57fe2e4914a67eb3d0e1ee861f,
title = "Minimizing the relative entropy in a face",
abstract = "For a separating state -algebra A, we give a limit formula for the minimal relative entropy S(.) in any face, as well as for the unique minimizer. In terms of this minimum, we define a superadditive function rho on the faces of A. In the case of a W*-algebra and normal rho can be considered as a function on the projection lattice. We show that the largest additive function on the projection lattice of an abelian W*-subalgebra, which is dominated by rho, is given by a normal positive, but not necessarily normalized linear functional on A. This functional is the unique solution of a minimal entropy problem.",
author = "Raggio, {G. A.} and Werner, {R. F.}",
year = "1990",
doi = "10.1007/BF00402255",
language = "English",
volume = "19",
pages = "7--14",
journal = "Lett. Math. Phys.",
issn = "1573-0530",
publisher = "Springer Netherlands",
number = "1",

}

Download

TY - JOUR

T1 - Minimizing the relative entropy in a face

AU - Raggio, G. A.

AU - Werner, R. F.

PY - 1990

Y1 - 1990

N2 - For a separating state -algebra A, we give a limit formula for the minimal relative entropy S(.) in any face, as well as for the unique minimizer. In terms of this minimum, we define a superadditive function rho on the faces of A. In the case of a W*-algebra and normal rho can be considered as a function on the projection lattice. We show that the largest additive function on the projection lattice of an abelian W*-subalgebra, which is dominated by rho, is given by a normal positive, but not necessarily normalized linear functional on A. This functional is the unique solution of a minimal entropy problem.

AB - For a separating state -algebra A, we give a limit formula for the minimal relative entropy S(.) in any face, as well as for the unique minimizer. In terms of this minimum, we define a superadditive function rho on the faces of A. In the case of a W*-algebra and normal rho can be considered as a function on the projection lattice. We show that the largest additive function on the projection lattice of an abelian W*-subalgebra, which is dominated by rho, is given by a normal positive, but not necessarily normalized linear functional on A. This functional is the unique solution of a minimal entropy problem.

U2 - 10.1007/BF00402255

DO - 10.1007/BF00402255

M3 - Article

VL - 19

SP - 7

EP - 14

JO - Lett. Math. Phys.

JF - Lett. Math. Phys.

SN - 1573-0530

IS - 1

ER -

Von denselben Autoren