Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 7-14 |
Seitenumfang | 8 |
Fachzeitschrift | Lett. Math. Phys. |
Jahrgang | 19 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 1990 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Lett. Math. Phys., Jahrgang 19, Nr. 1, 1990, S. 7-14.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Minimizing the relative entropy in a face
AU - Raggio, G. A.
AU - Werner, R. F.
PY - 1990
Y1 - 1990
N2 - For a separating state -algebra A, we give a limit formula for the minimal relative entropy S(.) in any face, as well as for the unique minimizer. In terms of this minimum, we define a superadditive function rho on the faces of A. In the case of a W*-algebra and normal rho can be considered as a function on the projection lattice. We show that the largest additive function on the projection lattice of an abelian W*-subalgebra, which is dominated by rho, is given by a normal positive, but not necessarily normalized linear functional on A. This functional is the unique solution of a minimal entropy problem.
AB - For a separating state -algebra A, we give a limit formula for the minimal relative entropy S(.) in any face, as well as for the unique minimizer. In terms of this minimum, we define a superadditive function rho on the faces of A. In the case of a W*-algebra and normal rho can be considered as a function on the projection lattice. We show that the largest additive function on the projection lattice of an abelian W*-subalgebra, which is dominated by rho, is given by a normal positive, but not necessarily normalized linear functional on A. This functional is the unique solution of a minimal entropy problem.
U2 - 10.1007/BF00402255
DO - 10.1007/BF00402255
M3 - Article
VL - 19
SP - 7
EP - 14
JO - Lett. Math. Phys.
JF - Lett. Math. Phys.
SN - 1573-0530
IS - 1
ER -