Method versatility in analysing human attitudes towards technology

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Olga Lezhnina
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades6 Juli 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

Verschiedene Forschungsbereiche müssen sich durch steigende Datenmengen neuen Herausforderungen stellen. Der Umgang damit erfordert – auch in Hinblick auf die Reproduzierbarkeit von Forschungsergebnissen – Methodenvielfalt. Methodenvielfalt ist die Fähigkeit umfangreiche Analysemethoden unter Berücksichtigung von angestrebten Studienzielen und gegebenen Eigenschaften der Datensätze flexible anzuwenden. Methodenvielfalt ist ein essentieller Bestandteil der Datenwissenschaft, der aber in seinem Umfang in verschiedenen Forschungsbereichen wie z. B. den Bildungswissenschaften oder der Psychologie noch nicht erfasst wird. Methodenvielfalt erweitert die Fachkenntnisse von Wissenschaftlern, die psychometrische Instrumente validieren, Datenanalysen von groß angelegten Umfragen im Bildungsbereich durchführen und ihre Ergebnisse im akademischen Kontext präsentieren. Das entspricht den drei Phasen eines Forschungszyklus: Messung, Forschung per se und Kommunikation. In dieser Doktorarbeit werden Studien, die sich auf diese Phasen konzentrieren, durch das gemeinsame Thema der Einstellung zu Technologien verbunden. Dieses Thema ist im Zeitalter zunehmender Digitalisierung von entscheidender Bedeutung. Die Doktorarbeit basiert auf vier Studien, die Methodenvielfalt auf vier verschiedenen Arten vorstellt: die konsekutive Anwendung von Methoden, die Toolbox-Auswahl, die simultane Anwendung von Methoden sowie die Erweiterung der Bandbreite. In der ersten Studie werden verschiedene psychometrische Analysemethoden konsekutiv angewandt, um die psychometrischen Eigenschaften einer entwickelten Skala zur Messung der Affinität von Interaktion mit Technologien zu überprüfen. In der zweiten Studie werden der Random-Forest-Algorithmus und die hierarchische lineare Modellierung als Methoden des Machine Learnings und der Statistik zur Datenanalyse einer groß angelegten Umfrage über die Einstellung von Schülern zur Informations- und Kommunikationstechnologie herangezogen. In der dritten Studie wird die Auswahl der Anzahl von Clustern im modellbasierten Clustering bei gleichzeitiger Verwendung von Kriterien für die Modellanpassung, der Clustertrennung und der Stabilität beleuchtet, so dass generalisierbare trennbare Cluster in den Daten zu den Einstellungen von Lehrern zu Technologien ausgewählt werden können. Die vierte Studie berichtet über die Entwicklung und Evaluierung eines wissenschaftlichen wissensgraphbasierten Dashboards, das die Bandbreite wissenschaftlicher Kommunikationsmittel erweitert. Die Ergebnisse der Doktorarbeit tragen dazu bei, die Anwendung von vielfältigen Methoden in verschiedenen Forschungsbereichen zu erhöhen. Außerdem fördern sie die methodische Ausbildung in der Datenanalyse und unterstützen die Weiterentwicklung der wissenschaftlichen Kommunikation im Rahmen von Open Science.

Zitieren

Method versatility in analysing human attitudes towards technology. / Lezhnina, Olga.
Hannover, 2023. 150 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Lezhnina, O 2023, 'Method versatility in analysing human attitudes towards technology', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/14119
Lezhnina, O. (2023). Method versatility in analysing human attitudes towards technology. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/14119
Lezhnina O. Method versatility in analysing human attitudes towards technology. Hannover, 2023. 150 S. doi: 10.15488/14119
Download
@phdthesis{b5e7df537f0d4882841f60f5efb28287,
title = "Method versatility in analysing human attitudes towards technology",
abstract = "Various research domains are facing new challenges brought about by growing volumes of data. To make optimal use of them, and to increase the reproducibility of research findings, method versatility is required. Method versatility is the ability to flexibly apply widely varying data analytic methods depending on the study goal and the dataset characteristics. Method versatility is an essential characteristic of data science, but in other areas of research, such as educational science or psychology, its importance is yet to be fully accepted. Versatile methods can enrich the repertoire of specialists who validate psychometric instruments, conduct data analysis of large-scale educational surveys, and communicate their findings to the academic community, which corresponds to three stages of the research cycle: measurement, research per se, and communication. In this thesis, studies related to these stages have a common theme of human attitudes towards technology, as this topic becomes vitally important in our age of ever-increasing digitization. The thesis is based on four studies, in which method versatility is introduced in four different ways: the consecutive use of methods, the toolbox choice, the simultaneous use, and the range extension. In the first study, different methods of psychometric analysis are used consecutively to reassess psychometric properties of a recently developed scale measuring affinity for technology interaction. In the second, the random forest algorithm and hierarchical linear modeling, as tools from machine learning and statistical toolboxes, are applied to data analysis of a large-scale educational survey related to students{\textquoteright} attitudes to information and communication technology. In the third, the challenge of selecting the number of clusters in model-based clustering is addressed by the simultaneous use of model fit, cluster separation, and the stability of partition criteria, so that generalizable separable clusters can be selected in the data related to teachers{\textquoteright} attitudes towards technology. The fourth reports the development and evaluation of a scholarly knowledge graph-powered dashboard aimed at extending the range of scholarly communication means. The findings of the thesis can be helpful for increasing method versatility in various research areas. They can also facilitate methodological advancement of academic training in data analysis and aid further development of scholarly communication in accordance with open science principles.",
author = "Olga Lezhnina",
year = "2023",
doi = "10.15488/14119",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Method versatility in analysing human attitudes towards technology

AU - Lezhnina, Olga

PY - 2023

Y1 - 2023

N2 - Various research domains are facing new challenges brought about by growing volumes of data. To make optimal use of them, and to increase the reproducibility of research findings, method versatility is required. Method versatility is the ability to flexibly apply widely varying data analytic methods depending on the study goal and the dataset characteristics. Method versatility is an essential characteristic of data science, but in other areas of research, such as educational science or psychology, its importance is yet to be fully accepted. Versatile methods can enrich the repertoire of specialists who validate psychometric instruments, conduct data analysis of large-scale educational surveys, and communicate their findings to the academic community, which corresponds to three stages of the research cycle: measurement, research per se, and communication. In this thesis, studies related to these stages have a common theme of human attitudes towards technology, as this topic becomes vitally important in our age of ever-increasing digitization. The thesis is based on four studies, in which method versatility is introduced in four different ways: the consecutive use of methods, the toolbox choice, the simultaneous use, and the range extension. In the first study, different methods of psychometric analysis are used consecutively to reassess psychometric properties of a recently developed scale measuring affinity for technology interaction. In the second, the random forest algorithm and hierarchical linear modeling, as tools from machine learning and statistical toolboxes, are applied to data analysis of a large-scale educational survey related to students’ attitudes to information and communication technology. In the third, the challenge of selecting the number of clusters in model-based clustering is addressed by the simultaneous use of model fit, cluster separation, and the stability of partition criteria, so that generalizable separable clusters can be selected in the data related to teachers’ attitudes towards technology. The fourth reports the development and evaluation of a scholarly knowledge graph-powered dashboard aimed at extending the range of scholarly communication means. The findings of the thesis can be helpful for increasing method versatility in various research areas. They can also facilitate methodological advancement of academic training in data analysis and aid further development of scholarly communication in accordance with open science principles.

AB - Various research domains are facing new challenges brought about by growing volumes of data. To make optimal use of them, and to increase the reproducibility of research findings, method versatility is required. Method versatility is the ability to flexibly apply widely varying data analytic methods depending on the study goal and the dataset characteristics. Method versatility is an essential characteristic of data science, but in other areas of research, such as educational science or psychology, its importance is yet to be fully accepted. Versatile methods can enrich the repertoire of specialists who validate psychometric instruments, conduct data analysis of large-scale educational surveys, and communicate their findings to the academic community, which corresponds to three stages of the research cycle: measurement, research per se, and communication. In this thesis, studies related to these stages have a common theme of human attitudes towards technology, as this topic becomes vitally important in our age of ever-increasing digitization. The thesis is based on four studies, in which method versatility is introduced in four different ways: the consecutive use of methods, the toolbox choice, the simultaneous use, and the range extension. In the first study, different methods of psychometric analysis are used consecutively to reassess psychometric properties of a recently developed scale measuring affinity for technology interaction. In the second, the random forest algorithm and hierarchical linear modeling, as tools from machine learning and statistical toolboxes, are applied to data analysis of a large-scale educational survey related to students’ attitudes to information and communication technology. In the third, the challenge of selecting the number of clusters in model-based clustering is addressed by the simultaneous use of model fit, cluster separation, and the stability of partition criteria, so that generalizable separable clusters can be selected in the data related to teachers’ attitudes towards technology. The fourth reports the development and evaluation of a scholarly knowledge graph-powered dashboard aimed at extending the range of scholarly communication means. The findings of the thesis can be helpful for increasing method versatility in various research areas. They can also facilitate methodological advancement of academic training in data analysis and aid further development of scholarly communication in accordance with open science principles.

U2 - 10.15488/14119

DO - 10.15488/14119

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren