Metamodel-Based Uncertainty Quantification for the Mechanical Behavior of Braided Composites

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Autoren

  • G. Balokas
  • Benedikt Kriegesmann
  • Steffen Czichon
  • A. Böttcher
  • Raimund Rolfes

Organisationseinheiten

Externe Organisationen

  • ELAN-AUSY GmbH
  • Technische Universität Hamburg (TUHH)
  • Fraunhofer-Institut für Windenergiesysteme (IWES)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksAdvances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites
Herausgeber/-innenMarco Petrolo
Herausgeber (Verlag)Springer Nature
Seiten179-193
Seitenumfang15
Auflage1.
ISBN (elektronisch)978-3-030-11969-0
ISBN (Print)978-3-030-11968-3
PublikationsstatusVeröffentlicht - 25 Feb. 2019

Publikationsreihe

NamePoliTO Springer Series
ISSN (Print)2509-6796
ISSN (elektronisch)2509-7024

Abstract

This chapter presents an uncertainty quantification framework for triaxially braided composites simulation, dealing with the stochastic stiffness prediction via numerical multiscale analysis. Efficiency is achieved by using various metamodeling techniques, such as neural networks, polynomial chaos expansion and Kriging modeling. Uncertainties accounting for material and geometric randomness are propagating through the scales to the final scatter of the mechanical properties of the macroscale. Information about the stochastic input and the dominating uncertain parameters is offered via application of a variance-based global sensitivity analysis. All methods employed in this work are non-intrusive, hence the framework can be used for all sorts of composite materials and numerical models. The need for realistic uncertainty quantification is highlighted.

ASJC Scopus Sachgebiete

Zitieren

Metamodel-Based Uncertainty Quantification for the Mechanical Behavior of Braided Composites. / Balokas, G.; Kriegesmann, Benedikt; Czichon, Steffen et al.
Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites. Hrsg. / Marco Petrolo. 1. Aufl. Springer Nature, 2019. S. 179-193 (PoliTO Springer Series).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Balokas, G, Kriegesmann, B, Czichon, S, Böttcher, A & Rolfes, R 2019, Metamodel-Based Uncertainty Quantification for the Mechanical Behavior of Braided Composites. in M Petrolo (Hrsg.), Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites. 1. Aufl., PoliTO Springer Series, Springer Nature, S. 179-193. https://doi.org/10.1007/978-3-030-11969-0_11
Balokas, G., Kriegesmann, B., Czichon, S., Böttcher, A., & Rolfes, R. (2019). Metamodel-Based Uncertainty Quantification for the Mechanical Behavior of Braided Composites. In M. Petrolo (Hrsg.), Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites (1. Aufl., S. 179-193). (PoliTO Springer Series). Springer Nature. https://doi.org/10.1007/978-3-030-11969-0_11
Balokas G, Kriegesmann B, Czichon S, Böttcher A, Rolfes R. Metamodel-Based Uncertainty Quantification for the Mechanical Behavior of Braided Composites. in Petrolo M, Hrsg., Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites. 1. Aufl. Springer Nature. 2019. S. 179-193. (PoliTO Springer Series). doi: 10.1007/978-3-030-11969-0_11
Balokas, G. ; Kriegesmann, Benedikt ; Czichon, Steffen et al. / Metamodel-Based Uncertainty Quantification for the Mechanical Behavior of Braided Composites. Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites. Hrsg. / Marco Petrolo. 1. Aufl. Springer Nature, 2019. S. 179-193 (PoliTO Springer Series).
Download
@inbook{2a8808b2cb184a378fd40191e7f47074,
title = "Metamodel-Based Uncertainty Quantification for the Mechanical Behavior of Braided Composites",
abstract = "This chapter presents an uncertainty quantification framework for triaxially braided composites simulation, dealing with the stochastic stiffness prediction via numerical multiscale analysis. Efficiency is achieved by using various metamodeling techniques, such as neural networks, polynomial chaos expansion and Kriging modeling. Uncertainties accounting for material and geometric randomness are propagating through the scales to the final scatter of the mechanical properties of the macroscale. Information about the stochastic input and the dominating uncertain parameters is offered via application of a variance-based global sensitivity analysis. All methods employed in this work are non-intrusive, hence the framework can be used for all sorts of composite materials and numerical models. The need for realistic uncertainty quantification is highlighted.",
author = "G. Balokas and Benedikt Kriegesmann and Steffen Czichon and A. B{\"o}ttcher and Raimund Rolfes",
year = "2019",
month = feb,
day = "25",
doi = "10.1007/978-3-030-11969-0_11",
language = "English",
isbn = "978-3-030-11968-3",
series = "PoliTO Springer Series",
publisher = "Springer Nature",
pages = "179--193",
editor = "Marco Petrolo",
booktitle = "Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites",
address = "United States",
edition = "1.",

}

Download

TY - CHAP

T1 - Metamodel-Based Uncertainty Quantification for the Mechanical Behavior of Braided Composites

AU - Balokas, G.

AU - Kriegesmann, Benedikt

AU - Czichon, Steffen

AU - Böttcher, A.

AU - Rolfes, Raimund

PY - 2019/2/25

Y1 - 2019/2/25

N2 - This chapter presents an uncertainty quantification framework for triaxially braided composites simulation, dealing with the stochastic stiffness prediction via numerical multiscale analysis. Efficiency is achieved by using various metamodeling techniques, such as neural networks, polynomial chaos expansion and Kriging modeling. Uncertainties accounting for material and geometric randomness are propagating through the scales to the final scatter of the mechanical properties of the macroscale. Information about the stochastic input and the dominating uncertain parameters is offered via application of a variance-based global sensitivity analysis. All methods employed in this work are non-intrusive, hence the framework can be used for all sorts of composite materials and numerical models. The need for realistic uncertainty quantification is highlighted.

AB - This chapter presents an uncertainty quantification framework for triaxially braided composites simulation, dealing with the stochastic stiffness prediction via numerical multiscale analysis. Efficiency is achieved by using various metamodeling techniques, such as neural networks, polynomial chaos expansion and Kriging modeling. Uncertainties accounting for material and geometric randomness are propagating through the scales to the final scatter of the mechanical properties of the macroscale. Information about the stochastic input and the dominating uncertain parameters is offered via application of a variance-based global sensitivity analysis. All methods employed in this work are non-intrusive, hence the framework can be used for all sorts of composite materials and numerical models. The need for realistic uncertainty quantification is highlighted.

UR - http://www.scopus.com/inward/record.url?scp=85083964992&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-11969-0_11

DO - 10.1007/978-3-030-11969-0_11

M3 - Contribution to book/anthology

AN - SCOPUS:85083964992

SN - 978-3-030-11968-3

T3 - PoliTO Springer Series

SP - 179

EP - 193

BT - Advances in Predictive Models and Methodologies for Numerically Efficient Linear and Nonlinear Analysis of Composites

A2 - Petrolo, Marco

PB - Springer Nature

ER -

Von denselben Autoren