Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 318-327 |
Seitenumfang | 10 |
Fachzeitschrift | Materials Science and Engineering A |
Jahrgang | 403 |
Ausgabenummer | 1-2 |
Publikationsstatus | Veröffentlicht - 25 Aug. 2005 |
Extern publiziert | Ja |
Abstract
Mechanical surface treatments, such as deep rolling, shot peening, hammering, etc., can significantly improve the fatigue behaviour of metallic materials owing to near-surface nanocrystallisation, strain hardening and compressive residual stresses. In this paper, we investigate the stability of near-surface microstructures of deep rolled austenitic stainless steel AISI 304 and turbine blade alloy Ti-6Al-4V during high temperature fatigue (up to 600 °C) by transmission electron microscopy and X-ray diffraction. The investigated nanocrystalline regions are stable during short time annealing and unstable during long time annealing at 600 °C. Isothermal fatigue in the low cycle fatigue regime at high stress amplitudes does not alter the nanocrystalline region up to 600 °C.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Materials Science and Engineering A, Jahrgang 403, Nr. 1-2, 25.08.2005, S. 318-327.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Mechanical and thermal stability of mechanically induced near-surface nanostructures
AU - Nikitin, I.
AU - Altenberger, I.
AU - Maier, H. J.
AU - Scholtes, B.
N1 - Funding Information: The authors would like to thank the German Science Foundation (DFG) for financial support of the Emmy-Noether group in Kassel (under contract-number AL 558/1-2).
PY - 2005/8/25
Y1 - 2005/8/25
N2 - Mechanical surface treatments, such as deep rolling, shot peening, hammering, etc., can significantly improve the fatigue behaviour of metallic materials owing to near-surface nanocrystallisation, strain hardening and compressive residual stresses. In this paper, we investigate the stability of near-surface microstructures of deep rolled austenitic stainless steel AISI 304 and turbine blade alloy Ti-6Al-4V during high temperature fatigue (up to 600 °C) by transmission electron microscopy and X-ray diffraction. The investigated nanocrystalline regions are stable during short time annealing and unstable during long time annealing at 600 °C. Isothermal fatigue in the low cycle fatigue regime at high stress amplitudes does not alter the nanocrystalline region up to 600 °C.
AB - Mechanical surface treatments, such as deep rolling, shot peening, hammering, etc., can significantly improve the fatigue behaviour of metallic materials owing to near-surface nanocrystallisation, strain hardening and compressive residual stresses. In this paper, we investigate the stability of near-surface microstructures of deep rolled austenitic stainless steel AISI 304 and turbine blade alloy Ti-6Al-4V during high temperature fatigue (up to 600 °C) by transmission electron microscopy and X-ray diffraction. The investigated nanocrystalline regions are stable during short time annealing and unstable during long time annealing at 600 °C. Isothermal fatigue in the low cycle fatigue regime at high stress amplitudes does not alter the nanocrystalline region up to 600 °C.
KW - Deep rolling
KW - Fatigue
KW - Microstructure
KW - Nanocrystalline materials
KW - Surface nanocrystallisation
KW - Transmission electron microscopy
UR - http://www.scopus.com/inward/record.url?scp=23444437587&partnerID=8YFLogxK
U2 - 10.1016/j.msea.2005.05.030
DO - 10.1016/j.msea.2005.05.030
M3 - Article
AN - SCOPUS:23444437587
VL - 403
SP - 318
EP - 327
JO - Materials Science and Engineering A
JF - Materials Science and Engineering A
SN - 0921-5093
IS - 1-2
ER -