Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 9595-9603 |
Seitenumfang | 9 |
Fachzeitschrift | Journal of Physical Chemistry B |
Jahrgang | 103 |
Ausgabenummer | 44 |
Publikationsstatus | Veröffentlicht - 4 Nov. 1999 |
Abstract
Mixed metal oxides are important industrial catalysts for the selective oxidation and ammoxidation of aromatics and alkenes and often contain Sb oxides as a component. For the preparation of a catalytically relevant system on the basis of monolayer-type catalysts, an alternative route as compared to the conventional impregnation was chosen by milling the dry compounds in a planetary mill. To get a closer insight into the spreading and oxidation properties of antimony oxide on titania, only the binary oxidic compounds Sb oxide and TiO2 as support were investigated in the present study. Photoelectron spectroscopy (XPS) investigations for surface analysis and X-ray absorption spectroscopy (XANES) for bulk phase analysis were applied. The various Sb oxides (Sb2O3, Sb2O4, and Sb2O5) show totally different spreading behavior. Only with the Sb(III) oxide on titania a significant increase of dispersion was detectable by means of XPS and temperature programmed reduction (TPR). The temperature of oxidation of the supported Sb(III) oxide in air was 100°C lower as compared to the bulk phase oxidation. The final formula after oxidation of Sb(III) oxide can be calculated from XANES results as Sb6O13 and does not end up at a stoichiometry of Sb2O4.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Physikalische und Theoretische Chemie
- Werkstoffwissenschaften (insg.)
- Oberflächen, Beschichtungen und Folien
- Werkstoffwissenschaften (insg.)
- Werkstoffchemie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Physical Chemistry B, Jahrgang 103, Nr. 44, 04.11.1999, S. 9595-9603.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Mechanical and Thermal Spreading of Antimony Oxides on the TiO2 Surface
T2 - Dispersion and Properties of Surface Antimony Oxide Species †
AU - Pillep, Bernhard
AU - Behrens, Peter
AU - Schubert, Uwe Anton
AU - Spengler, Jörg
AU - Knözinger, Helmut
PY - 1999/11/4
Y1 - 1999/11/4
N2 - Mixed metal oxides are important industrial catalysts for the selective oxidation and ammoxidation of aromatics and alkenes and often contain Sb oxides as a component. For the preparation of a catalytically relevant system on the basis of monolayer-type catalysts, an alternative route as compared to the conventional impregnation was chosen by milling the dry compounds in a planetary mill. To get a closer insight into the spreading and oxidation properties of antimony oxide on titania, only the binary oxidic compounds Sb oxide and TiO2 as support were investigated in the present study. Photoelectron spectroscopy (XPS) investigations for surface analysis and X-ray absorption spectroscopy (XANES) for bulk phase analysis were applied. The various Sb oxides (Sb2O3, Sb2O4, and Sb2O5) show totally different spreading behavior. Only with the Sb(III) oxide on titania a significant increase of dispersion was detectable by means of XPS and temperature programmed reduction (TPR). The temperature of oxidation of the supported Sb(III) oxide in air was 100°C lower as compared to the bulk phase oxidation. The final formula after oxidation of Sb(III) oxide can be calculated from XANES results as Sb6O13 and does not end up at a stoichiometry of Sb2O4.
AB - Mixed metal oxides are important industrial catalysts for the selective oxidation and ammoxidation of aromatics and alkenes and often contain Sb oxides as a component. For the preparation of a catalytically relevant system on the basis of monolayer-type catalysts, an alternative route as compared to the conventional impregnation was chosen by milling the dry compounds in a planetary mill. To get a closer insight into the spreading and oxidation properties of antimony oxide on titania, only the binary oxidic compounds Sb oxide and TiO2 as support were investigated in the present study. Photoelectron spectroscopy (XPS) investigations for surface analysis and X-ray absorption spectroscopy (XANES) for bulk phase analysis were applied. The various Sb oxides (Sb2O3, Sb2O4, and Sb2O5) show totally different spreading behavior. Only with the Sb(III) oxide on titania a significant increase of dispersion was detectable by means of XPS and temperature programmed reduction (TPR). The temperature of oxidation of the supported Sb(III) oxide in air was 100°C lower as compared to the bulk phase oxidation. The final formula after oxidation of Sb(III) oxide can be calculated from XANES results as Sb6O13 and does not end up at a stoichiometry of Sb2O4.
UR - http://www.scopus.com/inward/record.url?scp=0001069967&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0001069967
VL - 103
SP - 9595
EP - 9603
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
SN - 1089-5647
IS - 44
ER -