Measuring Tail Risk

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • University of Reading
  • Universität des Saarlandes
Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungMessung des Tail-Risikos
OriginalspracheEnglisch
Aufsatznummer105769
Seitenumfang24
FachzeitschriftJournal of Econometrics
Jahrgang241
Ausgabenummer2
PublikationsstatusVeröffentlicht - Apr. 2024

Abstract

Wir untersuchen umfassend die Nützlichkeit der in der Literatur vorgeschlagenen Maßstäbe für das Tail-Risiko. Wir bewerten sowohl ihre statistische als auch ihre ökonomische Validität. Das optionsimplizite Maß von Bollerslev und Todorov (2011b) () schneidet insgesamt am besten ab. Während einige andere Maßzahlen für das Tail-Risiko sich durch spezielle Aufgaben auszeichnen, schneiden sie in allen Tests gut ab: Erstens kann es sowohl zukünftige Tail-Ereignisse als auch zukünftige Tail-Volatilität vorhersagen. Zweitens hat es eine Vorhersagekraft für Renditen sowohl in der Zeitreihe als auch im Querschnitt sowie für die reale Wirtschaftstätigkeit. Schließlich zeigt eine Simulationsanalyse, dass der Hauptfaktor für die Leistung der Messfehler ist.

ASJC Scopus Sachgebiete

Zitieren

Measuring Tail Risk. / Dierkes, Maik; Hollstein, Fabian; Prokopczuk, Marcel et al.
in: Journal of Econometrics, Jahrgang 241, Nr. 2, 105769, 04.2024.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Dierkes M, Hollstein F, Prokopczuk M, Würsig CM. Measuring Tail Risk. Journal of Econometrics. 2024 Apr;241(2):105769. doi: 10.1016/j.jeconom.2024.105769, 10.2139/ssrn.3789005
Dierkes, Maik ; Hollstein, Fabian ; Prokopczuk, Marcel et al. / Measuring Tail Risk. in: Journal of Econometrics. 2024 ; Jahrgang 241, Nr. 2.
Download
@article{cc5dec65659543a1b00fd7bb50843f05,
title = "Measuring Tail Risk",
abstract = "We comprehensively investigate the usefulness of tail risk measures proposed in the literature. We evaluate their statistical as well as their economic validity. The option-implied measure of Bollerslev and Todorov (2011b) () performs best overall. While some other tail risk measures excel at specialized tasks, performs well in all tests: First, can predict both future tail events and future tail volatility. Second, it has predictive power for returns in both the time series and the cross-section, as well as for real economic activity. Finally, a simulation analysis shows that the main driver of performance is measurement error.",
keywords = "Return forecasting, Tail event forecasting, Tail risk, option implied, Tail events, Tail volatility",
author = "Maik Dierkes and Fabian Hollstein and Marcel Prokopczuk and W{\"u}rsig, {Christoph Matthias}",
note = "{\textcopyright} 2024 The Author(s).",
year = "2024",
month = apr,
doi = "10.1016/j.jeconom.2024.105769",
language = "English",
volume = "241",
journal = "Journal of Econometrics",
issn = "0304-4076",
publisher = "Elsevier BV",
number = "2",

}

Download

TY - JOUR

T1 - Measuring Tail Risk

AU - Dierkes, Maik

AU - Hollstein, Fabian

AU - Prokopczuk, Marcel

AU - Würsig, Christoph Matthias

N1 - © 2024 The Author(s).

PY - 2024/4

Y1 - 2024/4

N2 - We comprehensively investigate the usefulness of tail risk measures proposed in the literature. We evaluate their statistical as well as their economic validity. The option-implied measure of Bollerslev and Todorov (2011b) () performs best overall. While some other tail risk measures excel at specialized tasks, performs well in all tests: First, can predict both future tail events and future tail volatility. Second, it has predictive power for returns in both the time series and the cross-section, as well as for real economic activity. Finally, a simulation analysis shows that the main driver of performance is measurement error.

AB - We comprehensively investigate the usefulness of tail risk measures proposed in the literature. We evaluate their statistical as well as their economic validity. The option-implied measure of Bollerslev and Todorov (2011b) () performs best overall. While some other tail risk measures excel at specialized tasks, performs well in all tests: First, can predict both future tail events and future tail volatility. Second, it has predictive power for returns in both the time series and the cross-section, as well as for real economic activity. Finally, a simulation analysis shows that the main driver of performance is measurement error.

KW - Return forecasting

KW - Tail event forecasting

KW - Tail risk

KW - option implied

KW - Tail events

KW - Tail volatility

UR - http://www.scopus.com/inward/record.url?scp=85193617052&partnerID=8YFLogxK

U2 - 10.1016/j.jeconom.2024.105769

DO - 10.1016/j.jeconom.2024.105769

M3 - Article

VL - 241

JO - Journal of Econometrics

JF - Journal of Econometrics

SN - 0304-4076

IS - 2

M1 - 105769

ER -

Von denselben Autoren