Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 243-257 |
Seitenumfang | 15 |
Fachzeitschrift | Journal of differential geometry |
Jahrgang | 62 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 1 Jan. 2002 |
Extern publiziert | Ja |
Abstract
This article studies the mean curvature flow of Lagrangian submanifolds. In particular, we prove the following global existence and convergence theorem: if the potential function of a Lagrangian graph in T2n is convex, then the flow exists for all time and converges smoothly to a flat Lagrangian submanifold. We also discuss various conditions on the potential function that guarantee global existence and convergence.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Algebra und Zahlentheorie
- Mathematik (insg.)
- Geometrie und Topologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of differential geometry, Jahrgang 62, Nr. 2, 01.01.2002, S. 243-257.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Mean curvature flows of lagrangian submanifolds with convex potentials
AU - Smoczyk, Knut
AU - Wang, Mu Tao
PY - 2002/1/1
Y1 - 2002/1/1
N2 - This article studies the mean curvature flow of Lagrangian submanifolds. In particular, we prove the following global existence and convergence theorem: if the potential function of a Lagrangian graph in T2n is convex, then the flow exists for all time and converges smoothly to a flat Lagrangian submanifold. We also discuss various conditions on the potential function that guarantee global existence and convergence.
AB - This article studies the mean curvature flow of Lagrangian submanifolds. In particular, we prove the following global existence and convergence theorem: if the potential function of a Lagrangian graph in T2n is convex, then the flow exists for all time and converges smoothly to a flat Lagrangian submanifold. We also discuss various conditions on the potential function that guarantee global existence and convergence.
UR - http://www.scopus.com/inward/record.url?scp=0041657280&partnerID=8YFLogxK
U2 - 10.4310/jdg/1090950193
DO - 10.4310/jdg/1090950193
M3 - Article
AN - SCOPUS:0041657280
VL - 62
SP - 243
EP - 257
JO - Journal of differential geometry
JF - Journal of differential geometry
SN - 0022-040X
IS - 2
ER -