Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 689-702 |
Seitenumfang | 14 |
Fachzeitschrift | Mathematische Annalen |
Jahrgang | 347 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 2010 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Annalen, Jahrgang 347, Nr. 3, 2010, S. 689-702.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - McKay correspondence for the Poincaré series of Kleinian and Fuchsian singularities
AU - Ebeling, Wolfgang
AU - Ploog, David
PY - 2010
Y1 - 2010
N2 - We give a uniform and, to a large extent, geometrical proof that the Poincaré series of the coordinate algebra of a Kleinian singularity and of a Fuchsian singularity of genus 0 is the quotient of the characteristic polynomials of two Coxeter elements. These Coxeter elements are interpreted geometrically, using 2-Calabi-Yau triangulated categories and spherical twist functors.
AB - We give a uniform and, to a large extent, geometrical proof that the Poincaré series of the coordinate algebra of a Kleinian singularity and of a Fuchsian singularity of genus 0 is the quotient of the characteristic polynomials of two Coxeter elements. These Coxeter elements are interpreted geometrically, using 2-Calabi-Yau triangulated categories and spherical twist functors.
UR - http://www.scopus.com/inward/record.url?scp=77952095665&partnerID=8YFLogxK
U2 - 10.1007/s00208-009-0451-4
DO - 10.1007/s00208-009-0451-4
M3 - Article
AN - SCOPUS:77952095665
VL - 347
SP - 689
EP - 702
JO - Mathematische Annalen
JF - Mathematische Annalen
SN - 0025-5831
IS - 3
ER -