McKay correspondence for the Poincaré series of Kleinian and Fuchsian singularities

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Wolfgang Ebeling
  • David Ploog

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)689-702
Seitenumfang14
FachzeitschriftMathematische Annalen
Jahrgang347
Ausgabenummer3
PublikationsstatusVeröffentlicht - 2010

Abstract

We give a uniform and, to a large extent, geometrical proof that the Poincaré series of the coordinate algebra of a Kleinian singularity and of a Fuchsian singularity of genus 0 is the quotient of the characteristic polynomials of two Coxeter elements. These Coxeter elements are interpreted geometrically, using 2-Calabi-Yau triangulated categories and spherical twist functors.

ASJC Scopus Sachgebiete

Zitieren

McKay correspondence for the Poincaré series of Kleinian and Fuchsian singularities. / Ebeling, Wolfgang; Ploog, David.
in: Mathematische Annalen, Jahrgang 347, Nr. 3, 2010, S. 689-702.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Ebeling W, Ploog D. McKay correspondence for the Poincaré series of Kleinian and Fuchsian singularities. Mathematische Annalen. 2010;347(3):689-702. doi: 10.1007/s00208-009-0451-4
Ebeling, Wolfgang ; Ploog, David. / McKay correspondence for the Poincaré series of Kleinian and Fuchsian singularities. in: Mathematische Annalen. 2010 ; Jahrgang 347, Nr. 3. S. 689-702.
Download
@article{7fce7e8f8a414022bfe9e965af429256,
title = "McKay correspondence for the Poincar{\'e} series of Kleinian and Fuchsian singularities",
abstract = "We give a uniform and, to a large extent, geometrical proof that the Poincar{\'e} series of the coordinate algebra of a Kleinian singularity and of a Fuchsian singularity of genus 0 is the quotient of the characteristic polynomials of two Coxeter elements. These Coxeter elements are interpreted geometrically, using 2-Calabi-Yau triangulated categories and spherical twist functors.",
author = "Wolfgang Ebeling and David Ploog",
year = "2010",
doi = "10.1007/s00208-009-0451-4",
language = "English",
volume = "347",
pages = "689--702",
journal = "Mathematische Annalen",
issn = "0025-5831",
publisher = "Springer New York",
number = "3",

}

Download

TY - JOUR

T1 - McKay correspondence for the Poincaré series of Kleinian and Fuchsian singularities

AU - Ebeling, Wolfgang

AU - Ploog, David

PY - 2010

Y1 - 2010

N2 - We give a uniform and, to a large extent, geometrical proof that the Poincaré series of the coordinate algebra of a Kleinian singularity and of a Fuchsian singularity of genus 0 is the quotient of the characteristic polynomials of two Coxeter elements. These Coxeter elements are interpreted geometrically, using 2-Calabi-Yau triangulated categories and spherical twist functors.

AB - We give a uniform and, to a large extent, geometrical proof that the Poincaré series of the coordinate algebra of a Kleinian singularity and of a Fuchsian singularity of genus 0 is the quotient of the characteristic polynomials of two Coxeter elements. These Coxeter elements are interpreted geometrically, using 2-Calabi-Yau triangulated categories and spherical twist functors.

UR - http://www.scopus.com/inward/record.url?scp=77952095665&partnerID=8YFLogxK

U2 - 10.1007/s00208-009-0451-4

DO - 10.1007/s00208-009-0451-4

M3 - Article

AN - SCOPUS:77952095665

VL - 347

SP - 689

EP - 702

JO - Mathematische Annalen

JF - Mathematische Annalen

SN - 0025-5831

IS - 3

ER -