Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 3069-3078 |
Seitenumfang | 10 |
Fachzeitschrift | Proceedings of the American Mathematical Society |
Jahrgang | 136 |
Ausgabenummer | 9 |
Publikationsstatus | Veröffentlicht - Sept. 2008 |
Abstract
Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Proceedings of the American Mathematical Society, Jahrgang 136, Nr. 9, 09.2008, S. 3069-3078.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Maximal n-orthogonal modules for selfinjective algebras
AU - Erdmann, Karin
AU - Holm, Thorsten
PY - 2008/9
Y1 - 2008/9
N2 - Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.
AB - Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.
UR - http://www.scopus.com/inward/record.url?scp=63349106699&partnerID=8YFLogxK
U2 - 10.1090/S0002-9939-08-09297-6
DO - 10.1090/S0002-9939-08-09297-6
M3 - Article
AN - SCOPUS:63349106699
VL - 136
SP - 3069
EP - 3078
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
SN - 0002-9939
IS - 9
ER -