Maximal n-orthogonal modules for selfinjective algebras

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • University of Oxford
  • Otto-von-Guericke-Universität Magdeburg
  • University of Leeds
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)3069-3078
Seitenumfang10
FachzeitschriftProceedings of the American Mathematical Society
Jahrgang136
Ausgabenummer9
PublikationsstatusVeröffentlicht - Sept. 2008

Abstract

Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.

ASJC Scopus Sachgebiete

Zitieren

Maximal n-orthogonal modules for selfinjective algebras. / Erdmann, Karin; Holm, Thorsten.
in: Proceedings of the American Mathematical Society, Jahrgang 136, Nr. 9, 09.2008, S. 3069-3078.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Erdmann K, Holm T. Maximal n-orthogonal modules for selfinjective algebras. Proceedings of the American Mathematical Society. 2008 Sep;136(9):3069-3078. doi: 10.1090/S0002-9939-08-09297-6
Download
@article{c6e1d3b54c0746e2beae41855b4c2213,
title = "Maximal n-orthogonal modules for selfinjective algebras",
abstract = "Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.",
author = "Karin Erdmann and Thorsten Holm",
year = "2008",
month = sep,
doi = "10.1090/S0002-9939-08-09297-6",
language = "English",
volume = "136",
pages = "3069--3078",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "9",

}

Download

TY - JOUR

T1 - Maximal n-orthogonal modules for selfinjective algebras

AU - Erdmann, Karin

AU - Holm, Thorsten

PY - 2008/9

Y1 - 2008/9

N2 - Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.

AB - Let A be a finite-dimensional selfinjective algebra. We show that, for any n ≥ 1, maximal n-orthogonal A-modules (in the sense of Iyama) rarely exist. More precisely, we prove that if A admits a maximal n-orthogonal module, then all A-modules are of complexity at most 1.

UR - http://www.scopus.com/inward/record.url?scp=63349106699&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-08-09297-6

DO - 10.1090/S0002-9939-08-09297-6

M3 - Article

AN - SCOPUS:63349106699

VL - 136

SP - 3069

EP - 3078

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 9

ER -

Von denselben Autoren