Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 59-64 |
Seitenumfang | 6 |
Fachzeitschrift | Annals of combinatorics |
Jahrgang | 20 |
Ausgabenummer | 1 |
Frühes Online-Datum | 31 Okt. 2015 |
Publikationsstatus | Veröffentlicht - März 2016 |
Abstract
Extending the partition function multiplicatively to a function on partitions, we show that it has a unique maximum at an explicitly given partition for any n ≠ 7. The basis for this is an inequality for the partition function which seems not to have been noticed before.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Diskrete Mathematik und Kombinatorik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Annals of combinatorics, Jahrgang 20, Nr. 1, 03.2016, S. 59-64.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Maximal Multiplicative Properties of Partitions
AU - Bessenrodt, Christine
AU - Ono, Ken
N1 - Funding Information: The second author thanks the NSF and the Asa Griggs Candler Fund for their generous support.
PY - 2016/3
Y1 - 2016/3
N2 - Extending the partition function multiplicatively to a function on partitions, we show that it has a unique maximum at an explicitly given partition for any n ≠ 7. The basis for this is an inequality for the partition function which seems not to have been noticed before.
AB - Extending the partition function multiplicatively to a function on partitions, we show that it has a unique maximum at an explicitly given partition for any n ≠ 7. The basis for this is an inequality for the partition function which seems not to have been noticed before.
KW - partition function
KW - partitions
UR - http://www.scopus.com/inward/record.url?scp=84958774615&partnerID=8YFLogxK
U2 - 10.1007/s00026-015-0289-2
DO - 10.1007/s00026-015-0289-2
M3 - Article
AN - SCOPUS:84958774615
VL - 20
SP - 59
EP - 64
JO - Annals of combinatorics
JF - Annals of combinatorics
SN - 0218-0006
IS - 1
ER -