Maximal Multiplicative Properties of Partitions

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Christine Bessenrodt
  • Ken Ono

Organisationseinheiten

Externe Organisationen

  • Emory University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)59-64
Seitenumfang6
FachzeitschriftAnnals of combinatorics
Jahrgang20
Ausgabenummer1
Frühes Online-Datum31 Okt. 2015
PublikationsstatusVeröffentlicht - März 2016

Abstract

Extending the partition function multiplicatively to a function on partitions, we show that it has a unique maximum at an explicitly given partition for any n ≠ 7. The basis for this is an inequality for the partition function which seems not to have been noticed before.

ASJC Scopus Sachgebiete

Zitieren

Maximal Multiplicative Properties of Partitions. / Bessenrodt, Christine; Ono, Ken.
in: Annals of combinatorics, Jahrgang 20, Nr. 1, 03.2016, S. 59-64.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Bessenrodt C, Ono K. Maximal Multiplicative Properties of Partitions. Annals of combinatorics. 2016 Mär;20(1):59-64. Epub 2015 Okt 31. doi: 10.1007/s00026-015-0289-2
Bessenrodt, Christine ; Ono, Ken. / Maximal Multiplicative Properties of Partitions. in: Annals of combinatorics. 2016 ; Jahrgang 20, Nr. 1. S. 59-64.
Download
@article{200931ef10c7406894e97fc6b2b3ee01,
title = "Maximal Multiplicative Properties of Partitions",
abstract = "Extending the partition function multiplicatively to a function on partitions, we show that it has a unique maximum at an explicitly given partition for any n ≠ 7. The basis for this is an inequality for the partition function which seems not to have been noticed before.",
keywords = "partition function, partitions",
author = "Christine Bessenrodt and Ken Ono",
note = "Funding Information: The second author thanks the NSF and the Asa Griggs Candler Fund for their generous support.",
year = "2016",
month = mar,
doi = "10.1007/s00026-015-0289-2",
language = "English",
volume = "20",
pages = "59--64",
journal = "Annals of combinatorics",
issn = "0218-0006",
publisher = "Birkhauser Verlag Basel",
number = "1",

}

Download

TY - JOUR

T1 - Maximal Multiplicative Properties of Partitions

AU - Bessenrodt, Christine

AU - Ono, Ken

N1 - Funding Information: The second author thanks the NSF and the Asa Griggs Candler Fund for their generous support.

PY - 2016/3

Y1 - 2016/3

N2 - Extending the partition function multiplicatively to a function on partitions, we show that it has a unique maximum at an explicitly given partition for any n ≠ 7. The basis for this is an inequality for the partition function which seems not to have been noticed before.

AB - Extending the partition function multiplicatively to a function on partitions, we show that it has a unique maximum at an explicitly given partition for any n ≠ 7. The basis for this is an inequality for the partition function which seems not to have been noticed before.

KW - partition function

KW - partitions

UR - http://www.scopus.com/inward/record.url?scp=84958774615&partnerID=8YFLogxK

U2 - 10.1007/s00026-015-0289-2

DO - 10.1007/s00026-015-0289-2

M3 - Article

AN - SCOPUS:84958774615

VL - 20

SP - 59

EP - 64

JO - Annals of combinatorics

JF - Annals of combinatorics

SN - 0218-0006

IS - 1

ER -