Details
Originalsprache | Deutsch |
---|---|
Qualifikation | Doctor rerum naturalium |
Gradverleihende Hochschule | |
Betreut von |
|
Datum der Verleihung des Grades | 27 Nov. 2020 |
Erscheinungsort | Hannover |
Publikationsstatus | Veröffentlicht - 2020 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Hannover, 2020. 128 S.
Publikation: Qualifikations-/Studienabschlussarbeit › Dissertation
}
TY - BOOK
T1 - Materiewelleninterferenzen im Weltraum
AU - Lachmann, Maike Diana
N1 - Dissertation
PY - 2020
Y1 - 2020
N2 - Hochpräzise Atominterferometrie mit Bose-Einstein-Kondensaten hat das Potential Tests fundamentaler Physik mit bisher unerreichter Genauigkeit durchzuführen, sowie die Entwicklung neuartiger Sensoren für die Erdbeobachtung zu initiieren. Insbesondere schaffen Messungen mit Atominterferometern im Weltraum den Rahmen für Tests der allgemeinen Relativitätstheorie, der Suche nach dunkler Energie, satellitengestützter Erdbeobachtung und der Detektion von Gravitationswellen in einem auf der Erde nicht erreichbaren Regime. Die technischen Ansprüche einer Weltraummission unterscheiden sich grundlegend von denen eines Laboraufbaus. Neben einer Optimierung bezüglich der Masse, der Leistungsaufnahme und des Volumens muss die Apparatur autonom und wartungsfrei arbeiten, sowie robust gegen Vibrationen und Beschleunigungen während des Aufstiegs und Wiedereintritts in die Atmosphäre sein. Mit der MAIUS-1 Mission ist es am 23.01.2017 zum ersten Mal gelungen Bose- Einstein-Kondensate im Weltraum zu erzeugen. Erstmals wurde eine solche Apparatur an Bord einer Höhenforschungsrakete betrieben und hat Schlüsselmethoden für präzise Materiewelleninterferometrie demonstriert. In den insgesamt 13 Minuten des Parabelfluges befand sich die Nutzlast sechs Minuten lang über bei einer Höhe von 100km unter Mikrogravitationsbedingungen. Während des Starts und Aufstiegs konnten für eine Minute Experimente zum Kühlen und Fangen kalter atomarer Ensembles in dieser hochdynamischen Umgebung durchgeführt werden. In der Mikrogravitationsphase wurde der Phasenübergang zum Bose-Einstein- Kondensat mit mehr als 105 Rubidiumatomen untersucht. Die Präparation der ultrakalten Ensembles für die Interferometrie wurde charakterisiert und autonom vom System optimiert, wobei sich die Reproduzierbarkeit aller Prozesse zur Kühlung zeigte. Des Weiteren wurden Zwei-Photonen-Prozesse genutzt, um die Materiewelle in die Superposition von Impulszuständen zu überführen und zur Interferenz zu bringen. Somit konnte die Kohärenz über die gesamte Ausdehnung der Kondensate nachgewiesen werden. Mit jeder Licht-Materie-Wechselwirkung wurde eine zusätzliche Phasenmodulation auf die Materiewelle aufgeprägt. Diese Struktur wurde nach einer freien Evolutionszeit in der räumlichen Dichteverteilung sichtbar und konnte für weitere Analysen verschiedener Spinorkomponenten des Ensembles verwendet werden. Die Erkenntnisse zur Präparation der ultrakalten Ensembles und zur Interferometrie im Weltraum wie auch die entwickelten Technologien ermöglichen künftige Missionen.
AB - Hochpräzise Atominterferometrie mit Bose-Einstein-Kondensaten hat das Potential Tests fundamentaler Physik mit bisher unerreichter Genauigkeit durchzuführen, sowie die Entwicklung neuartiger Sensoren für die Erdbeobachtung zu initiieren. Insbesondere schaffen Messungen mit Atominterferometern im Weltraum den Rahmen für Tests der allgemeinen Relativitätstheorie, der Suche nach dunkler Energie, satellitengestützter Erdbeobachtung und der Detektion von Gravitationswellen in einem auf der Erde nicht erreichbaren Regime. Die technischen Ansprüche einer Weltraummission unterscheiden sich grundlegend von denen eines Laboraufbaus. Neben einer Optimierung bezüglich der Masse, der Leistungsaufnahme und des Volumens muss die Apparatur autonom und wartungsfrei arbeiten, sowie robust gegen Vibrationen und Beschleunigungen während des Aufstiegs und Wiedereintritts in die Atmosphäre sein. Mit der MAIUS-1 Mission ist es am 23.01.2017 zum ersten Mal gelungen Bose- Einstein-Kondensate im Weltraum zu erzeugen. Erstmals wurde eine solche Apparatur an Bord einer Höhenforschungsrakete betrieben und hat Schlüsselmethoden für präzise Materiewelleninterferometrie demonstriert. In den insgesamt 13 Minuten des Parabelfluges befand sich die Nutzlast sechs Minuten lang über bei einer Höhe von 100km unter Mikrogravitationsbedingungen. Während des Starts und Aufstiegs konnten für eine Minute Experimente zum Kühlen und Fangen kalter atomarer Ensembles in dieser hochdynamischen Umgebung durchgeführt werden. In der Mikrogravitationsphase wurde der Phasenübergang zum Bose-Einstein- Kondensat mit mehr als 105 Rubidiumatomen untersucht. Die Präparation der ultrakalten Ensembles für die Interferometrie wurde charakterisiert und autonom vom System optimiert, wobei sich die Reproduzierbarkeit aller Prozesse zur Kühlung zeigte. Des Weiteren wurden Zwei-Photonen-Prozesse genutzt, um die Materiewelle in die Superposition von Impulszuständen zu überführen und zur Interferenz zu bringen. Somit konnte die Kohärenz über die gesamte Ausdehnung der Kondensate nachgewiesen werden. Mit jeder Licht-Materie-Wechselwirkung wurde eine zusätzliche Phasenmodulation auf die Materiewelle aufgeprägt. Diese Struktur wurde nach einer freien Evolutionszeit in der räumlichen Dichteverteilung sichtbar und konnte für weitere Analysen verschiedener Spinorkomponenten des Ensembles verwendet werden. Die Erkenntnisse zur Präparation der ultrakalten Ensembles und zur Interferometrie im Weltraum wie auch die entwickelten Technologien ermöglichen künftige Missionen.
U2 - 10.15488/10215
DO - 10.15488/10215
M3 - Dissertation
CY - Hannover
ER -