Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Proceedings |
Untertitel | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018 |
Herausgeber (Verlag) | IEEE Computer Society |
Seiten | 2261-2268 |
Seitenumfang | 8 |
ISBN (elektronisch) | 9781538661000 |
Publikationsstatus | Veröffentlicht - 17 Dez. 2018 |
Veranstaltung | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018 - Salt Lake City, USA / Vereinigte Staaten Dauer: 18 Juni 2018 → 22 Juni 2018 |
Publikationsreihe
Name | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
Band | 2018-June |
ISSN (Print) | 2160-7508 |
ISSN (elektronisch) | 2160-7516 |
Abstract
In this work we present a modified neural network model which is capable to simulate Markov Chains. We show how to express and train such a network, how to ensure given statistical properties reflected in the training data and we demonstrate several applications where the network produces non-deterministic outcomes. One example is a random walker model, e.g. useful for simulation of Brownian motions or a natural Tic-Tac-Toe network which ensures non-deterministic game behavior.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Maschinelles Sehen und Mustererkennung
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Proceedings: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018. IEEE Computer Society, 2018. S. 2261-2268 8575464 (IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops; Band 2018-June).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Markov chain neural networks
AU - Awiszus, Maren
AU - Rosenhahn, Bodo
PY - 2018/12/17
Y1 - 2018/12/17
N2 - In this work we present a modified neural network model which is capable to simulate Markov Chains. We show how to express and train such a network, how to ensure given statistical properties reflected in the training data and we demonstrate several applications where the network produces non-deterministic outcomes. One example is a random walker model, e.g. useful for simulation of Brownian motions or a natural Tic-Tac-Toe network which ensures non-deterministic game behavior.
AB - In this work we present a modified neural network model which is capable to simulate Markov Chains. We show how to express and train such a network, how to ensure given statistical properties reflected in the training data and we demonstrate several applications where the network produces non-deterministic outcomes. One example is a random walker model, e.g. useful for simulation of Brownian motions or a natural Tic-Tac-Toe network which ensures non-deterministic game behavior.
UR - http://www.scopus.com/inward/record.url?scp=85060859974&partnerID=8YFLogxK
U2 - 10.1109/CVPRW.2018.00293
DO - 10.1109/CVPRW.2018.00293
M3 - Conference contribution
AN - SCOPUS:85060859974
T3 - IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
SP - 2261
EP - 2268
BT - Proceedings
PB - IEEE Computer Society
T2 - 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018
Y2 - 18 June 2018 through 22 June 2018
ER -