Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1120-1125 |
Seitenumfang | 6 |
Fachzeitschrift | Procedia CIRP |
Jahrgang | 118 |
Frühes Online-Datum | 18 Juli 2023 |
Publikationsstatus | Veröffentlicht - 2023 |
Veranstaltung | 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering 2022 - Naples, Italien Dauer: 13 Juli 2022 → 15 Juli 2022 |
Abstract
This paper presents a marker-free component identification of cylindrical workpieces produced by the manufacturing processes turning, grinding and deep rolling. The position of unique features from a 2-D profile in the 3-D frequency is detected for identification. Therefore, this work presents an approach using an industrial camera for surface measuring to clearly identify individual cylindrical components. In addition, wear tests are carried out to investigate the method's robustness.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Steuerungs- und Systemtechnik
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Procedia CIRP, Jahrgang 118, 2023, S. 1120-1125.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Marker-free identification of turned, ground and deep rolled workpieces using wavelet transformation
AU - Breidenstein, Bernd
AU - Wichmann, Marcel
AU - Voelker, Hendrik
PY - 2023
Y1 - 2023
N2 - This paper presents a marker-free component identification of cylindrical workpieces produced by the manufacturing processes turning, grinding and deep rolling. The position of unique features from a 2-D profile in the 3-D frequency is detected for identification. Therefore, this work presents an approach using an industrial camera for surface measuring to clearly identify individual cylindrical components. In addition, wear tests are carried out to investigate the method's robustness.
AB - This paper presents a marker-free component identification of cylindrical workpieces produced by the manufacturing processes turning, grinding and deep rolling. The position of unique features from a 2-D profile in the 3-D frequency is detected for identification. Therefore, this work presents an approach using an industrial camera for surface measuring to clearly identify individual cylindrical components. In addition, wear tests are carried out to investigate the method's robustness.
KW - Identification
KW - Surface analysis
KW - Wavelet transformation
UR - http://www.scopus.com/inward/record.url?scp=85173587072&partnerID=8YFLogxK
U2 - 10.1016/j.procir.2023.06.192
DO - 10.1016/j.procir.2023.06.192
M3 - Conference article
AN - SCOPUS:85173587072
VL - 118
SP - 1120
EP - 1125
JO - Procedia CIRP
JF - Procedia CIRP
SN - 2212-8271
T2 - 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering 2022
Y2 - 13 July 2022 through 15 July 2022
ER -