Magnetische multifunktionale Nanopartikel für die Implantat-dirigierte Wirkstoffanlieferung

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Dawid Peter Warwas
Forschungs-netzwerk anzeigen

Details

OriginalspracheDeutsch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Förderer
  • Deutsche Forschungsgemeinschaft (DFG)
Datum der Verleihung des Grades9 Nov. 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

Die zielgerichtete Behandlung von Implantat-assoziierten Infektionen und Organerkrankungen stellt die Mediziner in Anbetracht des demographischen Wandels vor große Herausforderungen. So sind für eine systemische Behandlung häufig hohe Wirkspiegel für das Erreichen einer adäquaten Konzentration am Zielort notwendig, welche wiederum das Risiko von unerwünschten Nebenwirkungen und zunehmenden Resistenzen gegenüber antimikrobiellen Wirkstoffen erhöhen. Der Fokus der vorliegenden Dissertation liegt daher in der Entwicklung, Herstellung und Charakterisierung von unterschiedlichen magnetischen Kern-Schale-Partikelsystemen als Wirkstoffträger für eine zielgerichtete effektive Behandlung. Das Implantat-dirigierte magnetische Wirkstoff-Targeting (ID-MDT) bietet hier einen vielversprechenden Ansatz zur selektiven Behandlung von Implantat-assoziierten Infektionen. Bei diesem Prinzip dienen magnetische Nanopartikel als Wirkstoffträger unter kombinierten Einsatz eines externen angelegten magnetischen Feldes und magnetisierbaren Implantaten. Im ersten Teil dieser Arbeit werden magnetische nanoporöse Silica-Nanopartikel (MNPSNPs) mit superparamagnetischen Kernen und einer multifunktionalen hochporösen Silica-Schale als Wirkstoffträger vorgestellt. Dabei liegt der Schwerpunkt in der Partikel- und Porengrößeneinstellung sowie der gezielten Funktionalisierung mit organischen Fluorophoren, Polyethylenglycol (PEG), periodisch mesoporösem Organosilica (PMO) sowie der Charakterisierung der damit verbundenen Materialeigenschaften. Der zweite Teil beschreibt den Einsatz der vorgestellten multifunktionalen Partikel als Wirkstofffreisetzungssysteme. Anhand des Antibiotikums Enrofloxacin wird dabei der Einfluss unterschiedlicher Modifizierungen auf das Freisetzungsprofil gezeigt. Im dritten und letzten Teil dieser Dissertation dienen magnetische Silica-Partikel (MSPs) als Wirkstoffträger für eine weitere Variante des magnetischen Wirkstoff-Targetings (MDT). Hierbei ist nach einer Partikelaufnahme durch Makrophagen unter Einsatz von Hyperthermie eine gesteuerte Freisetzung von Wirkstoffen für die zielgerichtete Behandlung von Organerkrankungen möglich.

Zitieren

Magnetische multifunktionale Nanopartikel für die Implantat-dirigierte Wirkstoffanlieferung. / Warwas, Dawid Peter.
Hannover, 2023. 222 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Warwas, DP 2023, 'Magnetische multifunktionale Nanopartikel für die Implantat-dirigierte Wirkstoffanlieferung', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/15473
Warwas, D. P. (2023). Magnetische multifunktionale Nanopartikel für die Implantat-dirigierte Wirkstoffanlieferung. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/15473
Download
@phdthesis{5866d6a822244af5b3fc0172923d65dc,
title = "Magnetische multifunktionale Nanopartikel f{\"u}r die Implantat-dirigierte Wirkstoffanlieferung",
abstract = "Die zielgerichtete Behandlung von Implantat-assoziierten Infektionen und Organerkrankungen stellt die Mediziner in Anbetracht des demographischen Wandels vor gro{\ss}e Herausforderungen. So sind f{\"u}r eine systemische Behandlung h{\"a}ufig hohe Wirkspiegel f{\"u}r das Erreichen einer ad{\"a}quaten Konzentration am Zielort notwendig, welche wiederum das Risiko von unerw{\"u}nschten Nebenwirkungen und zunehmenden Resistenzen gegen{\"u}ber antimikrobiellen Wirkstoffen erh{\"o}hen. Der Fokus der vorliegenden Dissertation liegt daher in der Entwicklung, Herstellung und Charakterisierung von unterschiedlichen magnetischen Kern-Schale-Partikelsystemen als Wirkstofftr{\"a}ger f{\"u}r eine zielgerichtete effektive Behandlung. Das Implantat-dirigierte magnetische Wirkstoff-Targeting (ID-MDT) bietet hier einen vielversprechenden Ansatz zur selektiven Behandlung von Implantat-assoziierten Infektionen. Bei diesem Prinzip dienen magnetische Nanopartikel als Wirkstofftr{\"a}ger unter kombinierten Einsatz eines externen angelegten magnetischen Feldes und magnetisierbaren Implantaten. Im ersten Teil dieser Arbeit werden magnetische nanopor{\"o}se Silica-Nanopartikel (MNPSNPs) mit superparamagnetischen Kernen und einer multifunktionalen hochpor{\"o}sen Silica-Schale als Wirkstofftr{\"a}ger vorgestellt. Dabei liegt der Schwerpunkt in der Partikel- und Porengr{\"o}{\ss}eneinstellung sowie der gezielten Funktionalisierung mit organischen Fluorophoren, Polyethylenglycol (PEG), periodisch mesopor{\"o}sem Organosilica (PMO) sowie der Charakterisierung der damit verbundenen Materialeigenschaften. Der zweite Teil beschreibt den Einsatz der vorgestellten multifunktionalen Partikel als Wirkstofffreisetzungssysteme. Anhand des Antibiotikums Enrofloxacin wird dabei der Einfluss unterschiedlicher Modifizierungen auf das Freisetzungsprofil gezeigt. Im dritten und letzten Teil dieser Dissertation dienen magnetische Silica-Partikel (MSPs) als Wirkstofftr{\"a}ger f{\"u}r eine weitere Variante des magnetischen Wirkstoff-Targetings (MDT). Hierbei ist nach einer Partikelaufnahme durch Makrophagen unter Einsatz von Hyperthermie eine gesteuerte Freisetzung von Wirkstoffen f{\"u}r die zielgerichtete Behandlung von Organerkrankungen m{\"o}glich.",
author = "Warwas, {Dawid Peter}",
year = "2023",
doi = "10.15488/15473",
language = "Deutsch",
school = "Gottfried Wilhelm Leibniz Universit{\"a}t Hannover",

}

Download

TY - BOOK

T1 - Magnetische multifunktionale Nanopartikel für die Implantat-dirigierte Wirkstoffanlieferung

AU - Warwas, Dawid Peter

PY - 2023

Y1 - 2023

N2 - Die zielgerichtete Behandlung von Implantat-assoziierten Infektionen und Organerkrankungen stellt die Mediziner in Anbetracht des demographischen Wandels vor große Herausforderungen. So sind für eine systemische Behandlung häufig hohe Wirkspiegel für das Erreichen einer adäquaten Konzentration am Zielort notwendig, welche wiederum das Risiko von unerwünschten Nebenwirkungen und zunehmenden Resistenzen gegenüber antimikrobiellen Wirkstoffen erhöhen. Der Fokus der vorliegenden Dissertation liegt daher in der Entwicklung, Herstellung und Charakterisierung von unterschiedlichen magnetischen Kern-Schale-Partikelsystemen als Wirkstoffträger für eine zielgerichtete effektive Behandlung. Das Implantat-dirigierte magnetische Wirkstoff-Targeting (ID-MDT) bietet hier einen vielversprechenden Ansatz zur selektiven Behandlung von Implantat-assoziierten Infektionen. Bei diesem Prinzip dienen magnetische Nanopartikel als Wirkstoffträger unter kombinierten Einsatz eines externen angelegten magnetischen Feldes und magnetisierbaren Implantaten. Im ersten Teil dieser Arbeit werden magnetische nanoporöse Silica-Nanopartikel (MNPSNPs) mit superparamagnetischen Kernen und einer multifunktionalen hochporösen Silica-Schale als Wirkstoffträger vorgestellt. Dabei liegt der Schwerpunkt in der Partikel- und Porengrößeneinstellung sowie der gezielten Funktionalisierung mit organischen Fluorophoren, Polyethylenglycol (PEG), periodisch mesoporösem Organosilica (PMO) sowie der Charakterisierung der damit verbundenen Materialeigenschaften. Der zweite Teil beschreibt den Einsatz der vorgestellten multifunktionalen Partikel als Wirkstofffreisetzungssysteme. Anhand des Antibiotikums Enrofloxacin wird dabei der Einfluss unterschiedlicher Modifizierungen auf das Freisetzungsprofil gezeigt. Im dritten und letzten Teil dieser Dissertation dienen magnetische Silica-Partikel (MSPs) als Wirkstoffträger für eine weitere Variante des magnetischen Wirkstoff-Targetings (MDT). Hierbei ist nach einer Partikelaufnahme durch Makrophagen unter Einsatz von Hyperthermie eine gesteuerte Freisetzung von Wirkstoffen für die zielgerichtete Behandlung von Organerkrankungen möglich.

AB - Die zielgerichtete Behandlung von Implantat-assoziierten Infektionen und Organerkrankungen stellt die Mediziner in Anbetracht des demographischen Wandels vor große Herausforderungen. So sind für eine systemische Behandlung häufig hohe Wirkspiegel für das Erreichen einer adäquaten Konzentration am Zielort notwendig, welche wiederum das Risiko von unerwünschten Nebenwirkungen und zunehmenden Resistenzen gegenüber antimikrobiellen Wirkstoffen erhöhen. Der Fokus der vorliegenden Dissertation liegt daher in der Entwicklung, Herstellung und Charakterisierung von unterschiedlichen magnetischen Kern-Schale-Partikelsystemen als Wirkstoffträger für eine zielgerichtete effektive Behandlung. Das Implantat-dirigierte magnetische Wirkstoff-Targeting (ID-MDT) bietet hier einen vielversprechenden Ansatz zur selektiven Behandlung von Implantat-assoziierten Infektionen. Bei diesem Prinzip dienen magnetische Nanopartikel als Wirkstoffträger unter kombinierten Einsatz eines externen angelegten magnetischen Feldes und magnetisierbaren Implantaten. Im ersten Teil dieser Arbeit werden magnetische nanoporöse Silica-Nanopartikel (MNPSNPs) mit superparamagnetischen Kernen und einer multifunktionalen hochporösen Silica-Schale als Wirkstoffträger vorgestellt. Dabei liegt der Schwerpunkt in der Partikel- und Porengrößeneinstellung sowie der gezielten Funktionalisierung mit organischen Fluorophoren, Polyethylenglycol (PEG), periodisch mesoporösem Organosilica (PMO) sowie der Charakterisierung der damit verbundenen Materialeigenschaften. Der zweite Teil beschreibt den Einsatz der vorgestellten multifunktionalen Partikel als Wirkstofffreisetzungssysteme. Anhand des Antibiotikums Enrofloxacin wird dabei der Einfluss unterschiedlicher Modifizierungen auf das Freisetzungsprofil gezeigt. Im dritten und letzten Teil dieser Dissertation dienen magnetische Silica-Partikel (MSPs) als Wirkstoffträger für eine weitere Variante des magnetischen Wirkstoff-Targetings (MDT). Hierbei ist nach einer Partikelaufnahme durch Makrophagen unter Einsatz von Hyperthermie eine gesteuerte Freisetzung von Wirkstoffen für die zielgerichtete Behandlung von Organerkrankungen möglich.

U2 - 10.15488/15473

DO - 10.15488/15473

M3 - Dissertation

CY - Hannover

ER -

Von denselben Autoren