Machine Learning in der adaptiven Fertigungssteuerung: Genetischer Algorithmus zur Bewertung alternativer Arbeitspläne

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Berend Denkena
  • Sören Wilmsmeier
  • Florian Winter

Externe Organisationen

  • Fauser AG
Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungMachine learning potentials in adaptive manufacturing control
OriginalspracheDeutsch
Seiten (von - bis)17-20
Seitenumfang4
FachzeitschriftFabriksoftware
Jahrgang24
Ausgabenummer3
PublikationsstatusVeröffentlicht - 2019

Abstract

In work planning, static conditions are currently assumed and supposedly optimal production sequences are defined before start of production. Dynamic influences during production lead to unsystematic rescheduling and an inefficient planning result. Therefore, a machine learning approach for adaptive production control using genetic algorithms is presented.

Schlagwörter

    Genetic Algorithm, Machine Learning, Production Control

ASJC Scopus Sachgebiete

Ziele für nachhaltige Entwicklung

Zitieren

Machine Learning in der adaptiven Fertigungssteuerung: Genetischer Algorithmus zur Bewertung alternativer Arbeitspläne. / Denkena, Berend; Wilmsmeier, Sören; Winter, Florian.
in: Fabriksoftware, Jahrgang 24, Nr. 3, 2019, S. 17-20.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Denkena, Berend ; Wilmsmeier, Sören ; Winter, Florian. / Machine Learning in der adaptiven Fertigungssteuerung : Genetischer Algorithmus zur Bewertung alternativer Arbeitspläne. in: Fabriksoftware. 2019 ; Jahrgang 24, Nr. 3. S. 17-20.
Download
@article{ee4cde0021d84868b0fddc9315b610b9,
title = "Machine Learning in der adaptiven Fertigungssteuerung: Genetischer Algorithmus zur Bewertung alternativer Arbeitspl{\"a}ne",
abstract = "In work planning, static conditions are currently assumed and supposedly optimal production sequences are defined before start of production. Dynamic influences during production lead to unsystematic rescheduling and an inefficient planning result. Therefore, a machine learning approach for adaptive production control using genetic algorithms is presented.",
keywords = "Genetic Algorithm, Machine Learning, Production Control",
author = "Berend Denkena and S{\"o}ren Wilmsmeier and Florian Winter",
year = "2019",
language = "Deutsch",
volume = "24",
pages = "17--20",
number = "3",

}

Download

TY - JOUR

T1 - Machine Learning in der adaptiven Fertigungssteuerung

T2 - Genetischer Algorithmus zur Bewertung alternativer Arbeitspläne

AU - Denkena, Berend

AU - Wilmsmeier, Sören

AU - Winter, Florian

PY - 2019

Y1 - 2019

N2 - In work planning, static conditions are currently assumed and supposedly optimal production sequences are defined before start of production. Dynamic influences during production lead to unsystematic rescheduling and an inefficient planning result. Therefore, a machine learning approach for adaptive production control using genetic algorithms is presented.

AB - In work planning, static conditions are currently assumed and supposedly optimal production sequences are defined before start of production. Dynamic influences during production lead to unsystematic rescheduling and an inefficient planning result. Therefore, a machine learning approach for adaptive production control using genetic algorithms is presented.

KW - Genetic Algorithm

KW - Machine Learning

KW - Production Control

UR - http://www.scopus.com/inward/record.url?scp=85093943783&partnerID=8YFLogxK

M3 - Artikel

AN - SCOPUS:85093943783

VL - 24

SP - 17

EP - 20

JO - Fabriksoftware

JF - Fabriksoftware

SN - 2569-7692

IS - 3

ER -