Loss of convexity for a modified Mullins-Sekerka model arising in diblock copolymer melts

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)434-448
Seitenumfang15
FachzeitschriftArchiv der Mathematik
Jahrgang77
Ausgabenummer5
PublikationsstatusVeröffentlicht - 1 Nov. 2001

Abstract

This modified (two-sided) Mullins-Sekerka model is a nonlocal evolution model for closed hypersurfaces, which appears as a singular limit of a modified Cahn-Hilliard equation describing micro-phase separation of diblock copolymer. Under this evolution the propagating interfaces maintain the enclosed volumes of the two phases. We will show by means of an example that this model does not preserve convexity in two space dimensions.

ASJC Scopus Sachgebiete

Zitieren

Loss of convexity for a modified Mullins-Sekerka model arising in diblock copolymer melts. / Escher, Joachim; Mayer, Uwe F.
in: Archiv der Mathematik, Jahrgang 77, Nr. 5, 01.11.2001, S. 434-448.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{e0f88e3afdaa4f6f930a84e503d942eb,
title = "Loss of convexity for a modified Mullins-Sekerka model arising in diblock copolymer melts",
abstract = "This modified (two-sided) Mullins-Sekerka model is a nonlocal evolution model for closed hypersurfaces, which appears as a singular limit of a modified Cahn-Hilliard equation describing micro-phase separation of diblock copolymer. Under this evolution the propagating interfaces maintain the enclosed volumes of the two phases. We will show by means of an example that this model does not preserve convexity in two space dimensions.",
author = "Joachim Escher and Mayer, {Uwe F.}",
year = "2001",
month = nov,
day = "1",
doi = "10.1007/PL00000515",
language = "English",
volume = "77",
pages = "434--448",
journal = "Archiv der Mathematik",
issn = "0003-889X",
publisher = "Birkhauser Verlag Basel",
number = "5",

}

Download

TY - JOUR

T1 - Loss of convexity for a modified Mullins-Sekerka model arising in diblock copolymer melts

AU - Escher, Joachim

AU - Mayer, Uwe F.

PY - 2001/11/1

Y1 - 2001/11/1

N2 - This modified (two-sided) Mullins-Sekerka model is a nonlocal evolution model for closed hypersurfaces, which appears as a singular limit of a modified Cahn-Hilliard equation describing micro-phase separation of diblock copolymer. Under this evolution the propagating interfaces maintain the enclosed volumes of the two phases. We will show by means of an example that this model does not preserve convexity in two space dimensions.

AB - This modified (two-sided) Mullins-Sekerka model is a nonlocal evolution model for closed hypersurfaces, which appears as a singular limit of a modified Cahn-Hilliard equation describing micro-phase separation of diblock copolymer. Under this evolution the propagating interfaces maintain the enclosed volumes of the two phases. We will show by means of an example that this model does not preserve convexity in two space dimensions.

UR - http://www.scopus.com/inward/record.url?scp=0035539847&partnerID=8YFLogxK

U2 - 10.1007/PL00000515

DO - 10.1007/PL00000515

M3 - Article

AN - SCOPUS:0035539847

VL - 77

SP - 434

EP - 448

JO - Archiv der Mathematik

JF - Archiv der Mathematik

SN - 0003-889X

IS - 5

ER -

Von denselben Autoren