Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 434-448 |
Seitenumfang | 15 |
Fachzeitschrift | Archiv der Mathematik |
Jahrgang | 77 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 1 Nov. 2001 |
Abstract
This modified (two-sided) Mullins-Sekerka model is a nonlocal evolution model for closed hypersurfaces, which appears as a singular limit of a modified Cahn-Hilliard equation describing micro-phase separation of diblock copolymer. Under this evolution the propagating interfaces maintain the enclosed volumes of the two phases. We will show by means of an example that this model does not preserve convexity in two space dimensions.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Archiv der Mathematik, Jahrgang 77, Nr. 5, 01.11.2001, S. 434-448.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Loss of convexity for a modified Mullins-Sekerka model arising in diblock copolymer melts
AU - Escher, Joachim
AU - Mayer, Uwe F.
PY - 2001/11/1
Y1 - 2001/11/1
N2 - This modified (two-sided) Mullins-Sekerka model is a nonlocal evolution model for closed hypersurfaces, which appears as a singular limit of a modified Cahn-Hilliard equation describing micro-phase separation of diblock copolymer. Under this evolution the propagating interfaces maintain the enclosed volumes of the two phases. We will show by means of an example that this model does not preserve convexity in two space dimensions.
AB - This modified (two-sided) Mullins-Sekerka model is a nonlocal evolution model for closed hypersurfaces, which appears as a singular limit of a modified Cahn-Hilliard equation describing micro-phase separation of diblock copolymer. Under this evolution the propagating interfaces maintain the enclosed volumes of the two phases. We will show by means of an example that this model does not preserve convexity in two space dimensions.
UR - http://www.scopus.com/inward/record.url?scp=0035539847&partnerID=8YFLogxK
U2 - 10.1007/PL00000515
DO - 10.1007/PL00000515
M3 - Article
AN - SCOPUS:0035539847
VL - 77
SP - 434
EP - 448
JO - Archiv der Mathematik
JF - Archiv der Mathematik
SN - 0003-889X
IS - 5
ER -