Long-term behaviour in a parabolic–elliptic chemotaxis–consumption model

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Mario Fuest
  • Johannes Lankeit
  • Masaaki Mizukami

Externe Organisationen

  • Universität Paderborn
  • Comenius University
  • Tokyo University of Science
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)254-279
Seitenumfang26
FachzeitschriftJournal of differential equations
Jahrgang271
Frühes Online-Datum17 Sept. 2020
PublikationsstatusVeröffentlicht - 15 Jan. 2021
Extern publiziertJa

Abstract

Global existence and boundedness of classical solutions of the chemotaxis–consumption system nt=Δn−∇⋅(n∇c),0=Δc−nc, under no-flux boundary conditions for n and Robin-type boundary conditions ∂νc=(γ−c)g for c (with γ>0 and C1+β(∂Ω)∋g>0 for some β∈(0,1)) are established in bounded domains Ω⊂RN, N≥1. Under a smallness condition on γ, moreover, we show convergence to the stationary solution.

ASJC Scopus Sachgebiete

Zitieren

Long-term behaviour in a parabolic–elliptic chemotaxis–consumption model. / Fuest, Mario; Lankeit, Johannes; Mizukami, Masaaki.
in: Journal of differential equations, Jahrgang 271, 15.01.2021, S. 254-279.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Fuest M, Lankeit J, Mizukami M. Long-term behaviour in a parabolic–elliptic chemotaxis–consumption model. Journal of differential equations. 2021 Jan 15;271:254-279. Epub 2020 Sep 17. doi: 10.1016/j.jde.2020.08.021
Fuest, Mario ; Lankeit, Johannes ; Mizukami, Masaaki. / Long-term behaviour in a parabolic–elliptic chemotaxis–consumption model. in: Journal of differential equations. 2021 ; Jahrgang 271. S. 254-279.
Download
@article{7e54a290f83140589d6dad8eae26025e,
title = "Long-term behaviour in a parabolic–elliptic chemotaxis–consumption model",
abstract = "Global existence and boundedness of classical solutions of the chemotaxis–consumption system nt=Δn−∇⋅(n∇c),0=Δc−nc, under no-flux boundary conditions for n and Robin-type boundary conditions ∂νc=(γ−c)g for c (with γ>0 and C1+β(∂Ω)∋g>0 for some β∈(0,1)) are established in bounded domains Ω⊂RN, N≥1. Under a smallness condition on γ, moreover, we show convergence to the stationary solution.",
keywords = "Boundedness, Chemotaxis, Chemotaxis–consumption, Global existence, Large-time behaviour, Realistic oxygen boundary conditions",
author = "Mario Fuest and Johannes Lankeit and Masaaki Mizukami",
note = "Funding Information: The first author is partially supported by the German Academic Scholarship Foundation and by the Deutsche Forschungsgemeinschaft within the project Emergence of structures and advantages in cross-diffusion systems, project number 411007140 . Publisher Copyright: {\textcopyright} 2020 Elsevier Inc.",
year = "2021",
month = jan,
day = "15",
doi = "10.1016/j.jde.2020.08.021",
language = "English",
volume = "271",
pages = "254--279",
journal = "Journal of differential equations",
issn = "0022-0396",
publisher = "Academic Press Inc.",

}

Download

TY - JOUR

T1 - Long-term behaviour in a parabolic–elliptic chemotaxis–consumption model

AU - Fuest, Mario

AU - Lankeit, Johannes

AU - Mizukami, Masaaki

N1 - Funding Information: The first author is partially supported by the German Academic Scholarship Foundation and by the Deutsche Forschungsgemeinschaft within the project Emergence of structures and advantages in cross-diffusion systems, project number 411007140 . Publisher Copyright: © 2020 Elsevier Inc.

PY - 2021/1/15

Y1 - 2021/1/15

N2 - Global existence and boundedness of classical solutions of the chemotaxis–consumption system nt=Δn−∇⋅(n∇c),0=Δc−nc, under no-flux boundary conditions for n and Robin-type boundary conditions ∂νc=(γ−c)g for c (with γ>0 and C1+β(∂Ω)∋g>0 for some β∈(0,1)) are established in bounded domains Ω⊂RN, N≥1. Under a smallness condition on γ, moreover, we show convergence to the stationary solution.

AB - Global existence and boundedness of classical solutions of the chemotaxis–consumption system nt=Δn−∇⋅(n∇c),0=Δc−nc, under no-flux boundary conditions for n and Robin-type boundary conditions ∂νc=(γ−c)g for c (with γ>0 and C1+β(∂Ω)∋g>0 for some β∈(0,1)) are established in bounded domains Ω⊂RN, N≥1. Under a smallness condition on γ, moreover, we show convergence to the stationary solution.

KW - Boundedness

KW - Chemotaxis

KW - Chemotaxis–consumption

KW - Global existence

KW - Large-time behaviour

KW - Realistic oxygen boundary conditions

UR - http://www.scopus.com/inward/record.url?scp=85091068327&partnerID=8YFLogxK

U2 - 10.1016/j.jde.2020.08.021

DO - 10.1016/j.jde.2020.08.021

M3 - Article

AN - SCOPUS:85091068327

VL - 271

SP - 254

EP - 279

JO - Journal of differential equations

JF - Journal of differential equations

SN - 0022-0396

ER -