Logical characterizations of algebraic circuit classes over integral domains

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Universität zu Lübeck
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)346-374
Seitenumfang29
FachzeitschriftMathematical Structures in Computer Science
Jahrgang34
Ausgabenummer5
Frühes Online-Datum13 Mai 2024
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 13 Mai 2024

Abstract

We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer to arbitrary infinite integral domains and generalize the AC and NC classes for this setting. We give a theorem in the style of Immerman's theorem which shows that for these adapted formalisms, sets decided by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand, Haak and Vollmer, and we show characterizations for the AC and NC hierarchy. Those generalizations apply to the Boolean AC and NC hierarchies as well. Furthermore, we introduce a formalism to be able to compare some of the aforementioned complexity classes with different underlying integral domains.

ASJC Scopus Sachgebiete

Zitieren

Logical characterizations of algebraic circuit classes over integral domains. / Barlag, Timon; Chudigiewitsch, Florian; Gaube, Sabrina A.
in: Mathematical Structures in Computer Science, Jahrgang 34, Nr. 5, 13.05.2024, S. 346-374.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Barlag T, Chudigiewitsch F, Gaube SA. Logical characterizations of algebraic circuit classes over integral domains. Mathematical Structures in Computer Science. 2024 Mai 13;34(5):346-374. Epub 2024 Mai 13. doi: 10.1017/S0960129524000136
Barlag, Timon ; Chudigiewitsch, Florian ; Gaube, Sabrina A. / Logical characterizations of algebraic circuit classes over integral domains. in: Mathematical Structures in Computer Science. 2024 ; Jahrgang 34, Nr. 5. S. 346-374.
Download
@article{252034e2aa7f48b1b784f8a680ef804d,
title = "Logical characterizations of algebraic circuit classes over integral domains",
abstract = "We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer to arbitrary infinite integral domains and generalize the ACℝ and NCℝ classes for this setting. We give a theorem in the style of Immerman's theorem which shows that for these adapted formalisms, sets decided by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand, Haak and Vollmer, and we show characterizations for the ACℝ and NCℝ hierarchy. Those generalizations apply to the Boolean AC and NC hierarchies as well. Furthermore, we introduce a formalism to be able to compare some of the aforementioned complexity classes with different underlying integral domains.",
keywords = "algebraic circuits, descriptive complexity",
author = "Timon Barlag and Florian Chudigiewitsch and Gaube, {Sabrina A.}",
note = "Publisher Copyright: Copyright {\textcopyright} 2024 The Author(s).",
year = "2024",
month = may,
day = "13",
doi = "10.1017/S0960129524000136",
language = "English",
volume = "34",
pages = "346--374",
journal = "Mathematical Structures in Computer Science",
issn = "0960-1295",
publisher = "Cambridge University Press",
number = "5",

}

Download

TY - JOUR

T1 - Logical characterizations of algebraic circuit classes over integral domains

AU - Barlag, Timon

AU - Chudigiewitsch, Florian

AU - Gaube, Sabrina A.

N1 - Publisher Copyright: Copyright © 2024 The Author(s).

PY - 2024/5/13

Y1 - 2024/5/13

N2 - We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer to arbitrary infinite integral domains and generalize the ACℝ and NCℝ classes for this setting. We give a theorem in the style of Immerman's theorem which shows that for these adapted formalisms, sets decided by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand, Haak and Vollmer, and we show characterizations for the ACℝ and NCℝ hierarchy. Those generalizations apply to the Boolean AC and NC hierarchies as well. Furthermore, we introduce a formalism to be able to compare some of the aforementioned complexity classes with different underlying integral domains.

AB - We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer to arbitrary infinite integral domains and generalize the ACℝ and NCℝ classes for this setting. We give a theorem in the style of Immerman's theorem which shows that for these adapted formalisms, sets decided by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand, Haak and Vollmer, and we show characterizations for the ACℝ and NCℝ hierarchy. Those generalizations apply to the Boolean AC and NC hierarchies as well. Furthermore, we introduce a formalism to be able to compare some of the aforementioned complexity classes with different underlying integral domains.

KW - algebraic circuits

KW - descriptive complexity

UR - http://www.scopus.com/inward/record.url?scp=85193063766&partnerID=8YFLogxK

U2 - 10.1017/S0960129524000136

DO - 10.1017/S0960129524000136

M3 - Article

AN - SCOPUS:85193063766

VL - 34

SP - 346

EP - 374

JO - Mathematical Structures in Computer Science

JF - Mathematical Structures in Computer Science

SN - 0960-1295

IS - 5

ER -

Von denselben Autoren