Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 179-189 |
Seitenumfang | 11 |
Fachzeitschrift | Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
Jahrgang | 444 |
Ausgabenummer | 1-2 |
Publikationsstatus | Veröffentlicht - 17 Dez. 1998 |
Extern publiziert | Ja |
Abstract
The periods of arbitrary abelian forms on hyperelliptic Riemann surfaces, in particular the periods of the meromorphic Seiberg-Witten differential λSW, are shown to be in one-to-one correspondence with the conformal blocks of correlation functions of the rational logarithmic conformal field theory with central charge c = c2,1 = -2. The fields of this theory precisely simulate the branched double covering picture of a hyperelliptic curve, such that generic periods can be expressed in terms of certain generalised hypergeometric functions, namely the Lauricella functions of type FD.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Kern- und Hochenergiephysik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, Jahrgang 444, Nr. 1-2, 17.12.1998, S. 179-189.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Logarithmic conformal field theory and Seiberg-Witten models
AU - Flohr, Michael A.I.
PY - 1998/12/17
Y1 - 1998/12/17
N2 - The periods of arbitrary abelian forms on hyperelliptic Riemann surfaces, in particular the periods of the meromorphic Seiberg-Witten differential λSW, are shown to be in one-to-one correspondence with the conformal blocks of correlation functions of the rational logarithmic conformal field theory with central charge c = c2,1 = -2. The fields of this theory precisely simulate the branched double covering picture of a hyperelliptic curve, such that generic periods can be expressed in terms of certain generalised hypergeometric functions, namely the Lauricella functions of type FD.
AB - The periods of arbitrary abelian forms on hyperelliptic Riemann surfaces, in particular the periods of the meromorphic Seiberg-Witten differential λSW, are shown to be in one-to-one correspondence with the conformal blocks of correlation functions of the rational logarithmic conformal field theory with central charge c = c2,1 = -2. The fields of this theory precisely simulate the branched double covering picture of a hyperelliptic curve, such that generic periods can be expressed in terms of certain generalised hypergeometric functions, namely the Lauricella functions of type FD.
UR - http://www.scopus.com/inward/record.url?scp=0347417130&partnerID=8YFLogxK
U2 - 10.48550/arXiv.hep-th/9808169
DO - 10.48550/arXiv.hep-th/9808169
M3 - Article
AN - SCOPUS:0347417130
VL - 444
SP - 179
EP - 189
JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
SN - 0370-2693
IS - 1-2
ER -