Logarithmic conformal field theory and Seiberg-Witten models

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Michael A.I. Flohr

Externe Organisationen

  • King's College London
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)179-189
Seitenumfang11
FachzeitschriftPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Jahrgang444
Ausgabenummer1-2
PublikationsstatusVeröffentlicht - 17 Dez. 1998
Extern publiziertJa

Abstract

The periods of arbitrary abelian forms on hyperelliptic Riemann surfaces, in particular the periods of the meromorphic Seiberg-Witten differential λSW, are shown to be in one-to-one correspondence with the conformal blocks of correlation functions of the rational logarithmic conformal field theory with central charge c = c2,1 = -2. The fields of this theory precisely simulate the branched double covering picture of a hyperelliptic curve, such that generic periods can be expressed in terms of certain generalised hypergeometric functions, namely the Lauricella functions of type FD.

ASJC Scopus Sachgebiete

Zitieren

Logarithmic conformal field theory and Seiberg-Witten models. / Flohr, Michael A.I.
in: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, Jahrgang 444, Nr. 1-2, 17.12.1998, S. 179-189.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Flohr MAI. Logarithmic conformal field theory and Seiberg-Witten models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 1998 Dez 17;444(1-2):179-189. doi: 10.48550/arXiv.hep-th/9808169, 10.1016/S0370-2693(98)01378-1
Download
@article{02432a701356414b80c19bb059d160c3,
title = "Logarithmic conformal field theory and Seiberg-Witten models",
abstract = "The periods of arbitrary abelian forms on hyperelliptic Riemann surfaces, in particular the periods of the meromorphic Seiberg-Witten differential λSW, are shown to be in one-to-one correspondence with the conformal blocks of correlation functions of the rational logarithmic conformal field theory with central charge c = c2,1 = -2. The fields of this theory precisely simulate the branched double covering picture of a hyperelliptic curve, such that generic periods can be expressed in terms of certain generalised hypergeometric functions, namely the Lauricella functions of type FD.",
author = "Flohr, {Michael A.I.}",
year = "1998",
month = dec,
day = "17",
doi = "10.48550/arXiv.hep-th/9808169",
language = "English",
volume = "444",
pages = "179--189",
journal = "Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics",
issn = "0370-2693",
publisher = "Elsevier",
number = "1-2",

}

Download

TY - JOUR

T1 - Logarithmic conformal field theory and Seiberg-Witten models

AU - Flohr, Michael A.I.

PY - 1998/12/17

Y1 - 1998/12/17

N2 - The periods of arbitrary abelian forms on hyperelliptic Riemann surfaces, in particular the periods of the meromorphic Seiberg-Witten differential λSW, are shown to be in one-to-one correspondence with the conformal blocks of correlation functions of the rational logarithmic conformal field theory with central charge c = c2,1 = -2. The fields of this theory precisely simulate the branched double covering picture of a hyperelliptic curve, such that generic periods can be expressed in terms of certain generalised hypergeometric functions, namely the Lauricella functions of type FD.

AB - The periods of arbitrary abelian forms on hyperelliptic Riemann surfaces, in particular the periods of the meromorphic Seiberg-Witten differential λSW, are shown to be in one-to-one correspondence with the conformal blocks of correlation functions of the rational logarithmic conformal field theory with central charge c = c2,1 = -2. The fields of this theory precisely simulate the branched double covering picture of a hyperelliptic curve, such that generic periods can be expressed in terms of certain generalised hypergeometric functions, namely the Lauricella functions of type FD.

UR - http://www.scopus.com/inward/record.url?scp=0347417130&partnerID=8YFLogxK

U2 - 10.48550/arXiv.hep-th/9808169

DO - 10.48550/arXiv.hep-th/9808169

M3 - Article

AN - SCOPUS:0347417130

VL - 444

SP - 179

EP - 189

JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

SN - 0370-2693

IS - 1-2

ER -