Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 1869 |
Fachzeitschrift | Water (Switzerland) |
Jahrgang | 10 |
Ausgabenummer | 12 |
Publikationsstatus | Veröffentlicht - 17 Dez. 2018 |
Abstract
Compared to technical infrastructure, nature-based solutions (NBS) strive to work with nature and to move beyond business-as-usual practices. Despite decades of research from various academia fields and a commencing mainstreaming of the term, a lack of cohesiveness and pertinent methods regarding the subject matter hinders further implementation. Using a functional landscape approach, this paper aims to identify the spatial extent of existing and potential NBS locations and applies it across a case study in Germany. Inspired by hydrological models, which work with delineated hydrological response units, this research instead defines hydromorphological landscape units (HLU) based on biophysical spatial criteria to identify the potential areas that could function as NBS. This approach was tested for floodplain-based NBS. The identified HLU were then compared with historical floodplain and land-use data to differentiate between active or potential NBS. The spatial delineation identified 3.6 million hectares of already active floodplains areas, for which we recommend continued or modified protection measures, and 0.4 million ha where the hydromorphological conditions are apt to support floodplains, yet are cut-offfrom the flooding regime and require rehabilitation measures. The identification of NBS through explicitly defined HLU serves as a spatial approach to support NBS implementation. Taken together, our research can provide an essential contribution to systemize the emerging scholarship on NBS in river landscapes and to help in selecting and planning appropriate NBS in practice.
ASJC Scopus Sachgebiete
- Biochemie, Genetik und Molekularbiologie (insg.)
- Biochemie
- Sozialwissenschaften (insg.)
- Geografie, Planung und Entwicklung
- Agrar- und Biowissenschaften (insg.)
- Aquatische Wissenschaften
- Umweltwissenschaften (insg.)
- Gewässerkunde und -technologie
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Water (Switzerland), Jahrgang 10, Nr. 12, 1869, 17.12.2018.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Locating Spatial Opportunities for Nature-Based Solutions: A River Landscape Application
AU - Guerrero, Paulina
AU - Haase, Dagmar
AU - Albert, Christian
N1 - Funding information: The authors are grateful for the funding support from the German Federal Ministry of Education and Research (BMBF) through the Junior Research Group PlanSmart (funding code: 01UU1601A), the BiodivERsA project ENABLE (COFUND 2015-16), and the Horizon 2020 innovation action CONNECTING (COproductioN with NaturE for City Transitioning, Innovation and Governance; No 730222-2) for fruitful discussions and comments about NBS in wetlands. The publication of this article was funded by the Open Access Fund of the Leibniz Universität Hannover.
PY - 2018/12/17
Y1 - 2018/12/17
N2 - Compared to technical infrastructure, nature-based solutions (NBS) strive to work with nature and to move beyond business-as-usual practices. Despite decades of research from various academia fields and a commencing mainstreaming of the term, a lack of cohesiveness and pertinent methods regarding the subject matter hinders further implementation. Using a functional landscape approach, this paper aims to identify the spatial extent of existing and potential NBS locations and applies it across a case study in Germany. Inspired by hydrological models, which work with delineated hydrological response units, this research instead defines hydromorphological landscape units (HLU) based on biophysical spatial criteria to identify the potential areas that could function as NBS. This approach was tested for floodplain-based NBS. The identified HLU were then compared with historical floodplain and land-use data to differentiate between active or potential NBS. The spatial delineation identified 3.6 million hectares of already active floodplains areas, for which we recommend continued or modified protection measures, and 0.4 million ha where the hydromorphological conditions are apt to support floodplains, yet are cut-offfrom the flooding regime and require rehabilitation measures. The identification of NBS through explicitly defined HLU serves as a spatial approach to support NBS implementation. Taken together, our research can provide an essential contribution to systemize the emerging scholarship on NBS in river landscapes and to help in selecting and planning appropriate NBS in practice.
AB - Compared to technical infrastructure, nature-based solutions (NBS) strive to work with nature and to move beyond business-as-usual practices. Despite decades of research from various academia fields and a commencing mainstreaming of the term, a lack of cohesiveness and pertinent methods regarding the subject matter hinders further implementation. Using a functional landscape approach, this paper aims to identify the spatial extent of existing and potential NBS locations and applies it across a case study in Germany. Inspired by hydrological models, which work with delineated hydrological response units, this research instead defines hydromorphological landscape units (HLU) based on biophysical spatial criteria to identify the potential areas that could function as NBS. This approach was tested for floodplain-based NBS. The identified HLU were then compared with historical floodplain and land-use data to differentiate between active or potential NBS. The spatial delineation identified 3.6 million hectares of already active floodplains areas, for which we recommend continued or modified protection measures, and 0.4 million ha where the hydromorphological conditions are apt to support floodplains, yet are cut-offfrom the flooding regime and require rehabilitation measures. The identification of NBS through explicitly defined HLU serves as a spatial approach to support NBS implementation. Taken together, our research can provide an essential contribution to systemize the emerging scholarship on NBS in river landscapes and to help in selecting and planning appropriate NBS in practice.
KW - Floodplains
KW - Nature-based solutions
KW - River restoration
KW - Spatial analysis
UR - http://www.scopus.com/inward/record.url?scp=85058994204&partnerID=8YFLogxK
U2 - 10.3390/w10121869
DO - 10.3390/w10121869
M3 - Article
AN - SCOPUS:85058994204
VL - 10
JO - Water (Switzerland)
JF - Water (Switzerland)
SN - 2073-4441
IS - 12
M1 - 1869
ER -